Abstract:Large Language Models (LLMs) have become effective zero-shot classifiers, but their high computational requirements and environmental costs limit their practicality for large-scale annotation in high-performance computing (HPC) environments. To support more sustainable workflows, we present Text2Graph, an open-source Python package that provides a modular implementation of existing text-to-graph classification approaches. The framework enables users to combine LLM-based partial annotation with Graph Neural Network (GNN) label propagation in a flexible manner, making it straightforward to swap components such as feature extractors, edge construction methods, and sampling strategies. We benchmark Text2Graph on a zero-shot setting using five datasets spanning topic classification and sentiment analysis tasks, comparing multiple variants against other zero-shot approaches for text classification. In addition to reporting performance, we provide detailed estimates of energy consumption and carbon emissions, showing that graph-based propagation achieves competitive results at a fraction of the energy and environmental cost.
Abstract:Large Language Models (LLMs) excel in many Natural Language Processing (NLP) tasks through in-context learning but often under-perform in Named Entity Recognition (NER), especially for lower-resource languages like Portuguese. While open-weight LLMs enable local deployment, no single model dominates all tasks, motivating ensemble approaches. However, existing LLM ensembles focus on text generation or classification, leaving NER under-explored. In this context, this work proposes a novel three-step ensemble pipeline for zero-shot NER using similarly capable, locally run LLMs. Our method outperforms individual LLMs in four out of five Portuguese NER datasets by leveraging a heuristic to select optimal model combinations with minimal annotated data. Moreover, we show that ensembles obtained on different source datasets generally outperform individual LLMs in cross-dataset configurations, potentially eliminating the need for annotated data for the current task. Our work advances scalable, low-resource, and zero-shot NER by effectively combining multiple small LLMs without fine-tuning. Code is available at https://github.com/Joao-Luz/local-llm-ner-ensemble.