Ulster University, UK
Abstract:Medical image classifiers detect gastrointestinal diseases well, but they do not explain their decisions. Large language models can generate clinical text, yet they struggle with visual reasoning and often produce unstable or incorrect explanations. This leaves a gap between what a model sees and the type of reasoning a clinician expects. We introduce a framework that links image classification with structured clinical reasoning. A new hybrid model, MobileCoAtNet, is designed for endoscopic images and achieves high accuracy across eight stomach-related classes. Its outputs are then used to drive reasoning by several LLMs. To judge this reasoning, we build two expert-verified benchmarks covering causes, symptoms, treatment, lifestyle, and follow-up care. Thirty-two LLMs are evaluated against these gold standards. Strong classification improves the quality of their explanations, but none of the models reach human-level stability. Even the best LLMs change their reasoning when prompts vary. Our study shows that combining DL with LLMs can produce useful clinical narratives, but current LLMs remain unreliable for high-stakes medical decisions. The framework provides a clearer view of their limits and a path for building safer reasoning systems. The complete source code and datasets used in this study are available at https://github.com/souravbasakshuvo/DL3M.




Abstract:This work presents a deep learning-based plant disease diagnostic system using images of fruits and leaves. Five state-of-the-art convolutional neural networks (CNN) have been employed for implementing the system. Hitherto model accuracy has been the focus for such applications and model optimization has not been accounted for the model to be applicable to end-user devices. Two model quantization techniques such as float16 and dynamic range quantization have been applied to the five state-of-the-art CNN architectures. The study shows that the quantized GoogleNet model achieved the size of 0.143 MB with an accuracy of 97%, which is the best candidate model considering the size criterion. The EfficientNet model achieved the size of 4.2MB with an accuracy of 99%, which is the best model considering the performance criterion. The source codes are available at https://github.com/CompostieAI/Guava-disease-detection.