Wichita State University, USA
Abstract:Medical image classifiers detect gastrointestinal diseases well, but they do not explain their decisions. Large language models can generate clinical text, yet they struggle with visual reasoning and often produce unstable or incorrect explanations. This leaves a gap between what a model sees and the type of reasoning a clinician expects. We introduce a framework that links image classification with structured clinical reasoning. A new hybrid model, MobileCoAtNet, is designed for endoscopic images and achieves high accuracy across eight stomach-related classes. Its outputs are then used to drive reasoning by several LLMs. To judge this reasoning, we build two expert-verified benchmarks covering causes, symptoms, treatment, lifestyle, and follow-up care. Thirty-two LLMs are evaluated against these gold standards. Strong classification improves the quality of their explanations, but none of the models reach human-level stability. Even the best LLMs change their reasoning when prompts vary. Our study shows that combining DL with LLMs can produce useful clinical narratives, but current LLMs remain unreliable for high-stakes medical decisions. The framework provides a clearer view of their limits and a path for building safer reasoning systems. The complete source code and datasets used in this study are available at https://github.com/souravbasakshuvo/DL3M.
Abstract:Large Language Models (LLMs) have demonstrated remarkable proficiency in generating text that closely resemble human writing. However, they often generate factually incorrect statements, a problem typically referred to as 'hallucination'. Addressing hallucination is crucial for enhancing the reliability and effectiveness of LLMs. While much research has focused on hallucinations in English, our study extends this investigation to conversational data in three languages: Hindi, Farsi, and Mandarin. We offer a comprehensive analysis of a dataset to examine both factual and linguistic errors in these languages for GPT-3.5, GPT-4o, Llama-3.1, Gemma-2.0, DeepSeek-R1 and Qwen-3. We found that LLMs produce very few hallucinated responses in Mandarin but generate a significantly higher number of hallucinations in Hindi and Farsi.




Abstract:Bangla, a language spoken by over 300 million native speakers and ranked as the sixth most spoken language worldwide, presents unique challenges in natural language processing (NLP) due to its complex morphological characteristics and limited resources. While recent Large Decoder Based models (LLMs), such as GPT, LLaMA, and DeepSeek, have demonstrated excellent performance across many NLP tasks, their effectiveness in Bangla remains largely unexplored. In this paper, we establish the first benchmark comparing decoder-based LLMs with classic encoder-based models for Zero-Shot Multi-Label Classification (Zero-Shot-MLC) task in Bangla. Our evaluation of 32 state-of-the-art models reveals that, existing so-called powerful encoders and decoders still struggle to achieve high accuracy on the Bangla Zero-Shot-MLC task, suggesting a need for more research and resources for Bangla NLP.