Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Image-to-Image (I2I) translation involves converting an image from one domain to another. Deterministic I2I translation, such as in image super-resolution, extends this concept by guaranteeing that each input generates a consistent and predictable output, closely matching the ground truth (GT) with high fidelity. In this paper, we propose a denoising Brownian bridge model with dual approximators (Dual-approx Bridge), a novel generative model that exploits the Brownian bridge dynamics and two neural network-based approximators (one for forward and one for reverse process) to produce faithful output with negligible variance and high image quality in I2I translations. Our extensive experiments on benchmark datasets including image generation and super-resolution demonstrate the consistent and superior performance of Dual-approx Bridge in terms of image quality and faithfulness to GT when compared to both stochastic and deterministic baselines. Project page and code: https://github.com/bohan95/dual-app-bridge
This paper addresses the critical bottleneck of infrared (IR) data scarcity in Printed Circuit Board (PCB) defect detection by proposing a cross-modal data augmentation framework integrating CycleGAN and YOLOv8. Unlike conventional methods relying on paired supervision, we leverage CycleGAN to perform unpaired image-to-image translation, mapping abundant visible-light PCB images into the infrared domain. This generative process synthesizes high-fidelity pseudo-IR samples that preserve the structural semantics of defects while accurately simulating thermal distribution patterns. Subsequently, we construct a heterogeneous training strategy that fuses generated pseudo-IR data with limited real IR samples to train a lightweight YOLOv8 detector. Experimental results demonstrate that this method effectively enhances feature learning under low-data conditions. The augmented detector significantly outperforms models trained on limited real data alone and approaches the performance benchmarks of fully supervised training, proving the efficacy of pseudo-IR synthesis as a robust augmentation strategy for industrial inspection.
RGB-based camouflaged object detection struggles in real-world scenarios where color and texture cues are ambiguous. While hyperspectral image offers a powerful alternative by capturing fine-grained spectral signatures, progress in hyperspectral camouflaged object detection (HCOD) has been critically hampered by the absence of a dedicated, large-scale benchmark. To spur innovation, we introduce HyperCOD, the first challenging benchmark for HCOD. Comprising 350 high-resolution hyperspectral images, It features complex real-world scenarios with minimal objects, intricate shapes, severe occlusions, and dynamic lighting to challenge current models. The advent of foundation models like the Segment Anything Model (SAM) presents a compelling opportunity. To adapt the Segment Anything Model (SAM) for HCOD, we propose HyperSpectral Camouflage-aware SAM (HSC-SAM). HSC-SAM ingeniously reformulates the hyperspectral image by decoupling it into a spatial map fed to SAM's image encoder and a spectral saliency map that serves as an adaptive prompt. This translation effectively bridges the modality gap. Extensive experiments show that HSC-SAM sets a new state-of-the-art on HyperCOD and generalizes robustly to other public HSI datasets. The HyperCOD dataset and our HSC-SAM baseline provide a robust foundation to foster future research in this emerging area.
We present HAQAGen, a unified generative model for resolution-invariant NIR-to-RGB colorization that balances chromatic realism with structural fidelity. The proposed model introduces (i) a combined loss term aligning the global color statistics through differentiable histogram matching, perceptual image quality measure, and feature based similarity to preserve texture information, (ii) local hue-saturation priors injected via Spatially Adaptive Denormalization (SPADE) to stabilize chromatic reconstruction, and (iii) texture-aware supervision within a Mamba backbone to preserve fine details. We introduce an adaptive-resolution inference engine that further enables high-resolution translation without sacrificing quality. Our proposed NIR-to-RGB translation model simultaneously enforces global color statistics and local chromatic consistency, while scaling to native resolutions without compromising texture fidelity or generalization. Extensive evaluations on FANVID, OMSIV, VCIP2020, and RGB2NIR using different evaluation metrics demonstrate consistent improvements over state-of-the-art baseline methods. HAQAGen produces images with sharper textures, natural colors, attaining significant gains as per perceptual metrics. These results position HAQAGen as a scalable and effective solution for NIR-to-RGB translation across diverse imaging scenarios. Project Page: https://rajeev-dw9.github.io/HAQAGen/
We introduce Talk2Move, a reinforcement learning (RL) based diffusion framework for text-instructed spatial transformation of objects within scenes. Spatially manipulating objects in a scene through natural language poses a challenge for multimodal generation systems. While existing text-based manipulation methods can adjust appearance or style, they struggle to perform object-level geometric transformations-such as translating, rotating, or resizing objects-due to scarce paired supervision and pixel-level optimization limits. Talk2Move employs Group Relative Policy Optimization (GRPO) to explore geometric actions through diverse rollouts generated from input images and lightweight textual variations, removing the need for costly paired data. A spatial reward guided model aligns geometric transformations with linguistic description, while off-policy step evaluation and active step sampling improve learning efficiency by focusing on informative transformation stages. Furthermore, we design object-centric spatial rewards that evaluate displacement, rotation, and scaling behaviors directly, enabling interpretable and coherent transformations. Experiments on curated benchmarks demonstrate that Talk2Move achieves precise, consistent, and semantically faithful object transformations, outperforming existing text-guided editing approaches in both spatial accuracy and scene coherence.
Anomaly detection plays a vital role in industrial manufacturing. Due to the scarcity of real defect images, unsupervised approaches that rely solely on normal images have been extensively studied. Recently, diffusion-based generative models brought attention to training data synthesis as an alternative solution. In this work, we focus on a strategy to effectively leverage synthetic images to maximize the anomaly detection performance. Previous synthesis strategies are broadly categorized into two groups, presenting a clear trade-off. Rule-based synthesis, such as injecting noise or pasting patches, is cost-effective but often fails to produce realistic defect images. On the other hand, generative model-based synthesis can create high-quality defect images but requires substantial cost. To address this problem, we propose a novel framework that leverages a pre-trained text-guided image-to-image translation model and image retrieval model to efficiently generate synthetic defect images. Specifically, the image retrieval model assesses the similarity of the generated images to real normal images and filters out irrelevant outputs, thereby enhancing the quality and relevance of the generated defect images. To effectively leverage synthetic images, we also introduce a two stage training strategy. In this strategy, the model is first pre-trained on a large volume of images from rule-based synthesis and then fine-tuned on a smaller set of high-quality images. This method significantly reduces the cost for data collection while improving the anomaly detection performance. Experiments on the MVTec AD dataset demonstrate the effectiveness of our approach.
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
Multimodal Large Language Models (MLLMs) have shown strong potential for radiology report generation, yet their clinical translation is hindered by architectural heterogeneity and the prevalence of factual hallucinations. Standard supervised fine-tuning often fails to strictly align linguistic outputs with visual evidence, while existing reinforcement learning approaches struggle with either prohibitive computational costs or limited exploration. To address these challenges, we propose a comprehensive framework for self-consistent radiology report generation. First, we conduct a systematic evaluation to identify optimal vision encoder and LLM backbone configurations for medical imaging. Building on this foundation, we introduce a novel "Reason-then-Summarize" architecture optimized via Group Relative Policy Optimization (GRPO). This framework restructures generation into two distinct components: a think block for detailed findings and an answer block for structured disease labels. By utilizing a multi-dimensional composite reward function, we explicitly penalize logical discrepancies between the generated narrative and the final diagnosis. Extensive experiments on the MIMIC-CXR benchmark demonstrate that our method achieves state-of-the-art performance in clinical efficacy metrics and significantly reduces hallucinations compared to strong supervised baselines.
Modern surveillance systems increasingly rely on multi-wavelength sensors and deep neural networks to recognize faces in infrared images captured at night. However, most facial recognition models are trained on visible light datasets, leading to substantial performance degradation on infrared inputs due to significant domain shifts. Early feature-based methods for infrared face recognition proved ineffective, prompting researchers to adopt generative approaches that convert infrared images into visible light images for improved recognition. This paradigm, known as Heterogeneous Face Recognition (HFR), faces challenges such as model and modality discrepancies, leading to distortion and feature loss in generated images. To address these limitations, this paper introduces a novel latent diffusion-based model designed to generate high-quality visible face images from thermal inputs while preserving critical identity features. A multi-attribute classifier is incorporated to extract key facial attributes from visible images, mitigating feature loss during infrared-to-visible image restoration. Additionally, we propose the Self-attn Mamba module, which enhances global modeling of cross-modal features and significantly improves inference speed. Experimental results on two benchmark datasets demonstrate the superiority of our approach, achieving state-of-the-art performance in both image quality and identity preservation.
Domain gaps arising from variations in imaging devices and population distributions pose significant challenges for machine learning in medical image analysis. Existing image-to-image translation methods primarily aim to learn mappings between domains, often generating diverse synthetic data with variations in anatomical scale and shape, but they usually overlook spatial correspondence during the translation process. For clinical applications, traceability, defined as the ability to provide pixel-level correspondences between original and translated images, is equally important. This property enhances clinical interpretability but has been largely overlooked in previous approaches. To address this gap, we propose Plasticine, which is, to the best of our knowledge, the first end-to-end image-to-image translation framework explicitly designed with traceability as a core objective. Our method combines intensity translation and spatial transformation within a denoising diffusion framework. This design enables the generation of synthetic images with interpretable intensity transitions and spatially coherent deformations, supporting pixel-wise traceability throughout the translation process.