Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
The sample efficiency challenge in Deep Reinforcement Learning (DRL) compromises its industrial adoption due to the high cost and time demands of real-world training. Virtual environments offer a cost-effective alternative for training DRL agents, but the transfer of learned policies to real setups is hindered by the sim-to-real gap. Achieving zero-shot transfer, where agents perform directly in real environments without additional tuning, is particularly desirable for its efficiency and practical value. This work proposes a novel domain adaptation approach relying on a Style-Identified Cycle Consistent Generative Adversarial Network (StyleID-CycleGAN or SICGAN), an original Cycle Consistent Generative Adversarial Network (CycleGAN) based model. SICGAN translates raw virtual observations into real-synthetic images, creating a hybrid domain for training DRL agents that combines virtual dynamics with real-like visual inputs. Following virtual training, the agent can be directly deployed, bypassing the need for real-world training. The pipeline is validated with two distinct industrial robots in the approaching phase of a pick-and-place operation. In virtual environments agents achieve success rates of 90 to 100\%, and real-world deployment confirms robust zero-shot transfer (i.e., without additional training in the physical environment) with accuracies above 95\% for most workspace regions. We use augmented reality targets to improve the evaluation process efficiency, and experimentally demonstrate that the agent successfully generalizes to real objects of varying colors and shapes, including LEGO\textsuperscript{\textregistered}~cubes and a mug. These results establish the proposed pipeline as an efficient, scalable solution to the sim-to-real problem.
Radiomics enables quantitative medical image analysis by converting imaging data into structured, high-dimensional feature representations for predictive modeling. Despite methodological developments and encouraging retrospective results, radiomics continue to face persistent challenges related to feature instability, limited reproducibility, validation bias, and restricted clinical translation. Existing reviews largely focus on application-specific outcomes or isolated pipeline components, with limited analysis of how interdependent design choices across acquisition, preprocessing, feature engineering, modeling, and evaluation collectively affect robustness and generalizability. This survey provides an end-to-end analysis of radiomics pipelines, examining how methodological decisions at each stage influence feature stability, model reliability, and translational validity. This paper reviews radiomic feature extraction, selection, and dimensionality reduction strategies; classical machine and deep learning-based modeling approaches; and ensemble and hybrid frameworks, with emphasis on validation protocols, data leakage prevention, and statistical reliability. Clinical applications are discussed with a focus on evaluation rigor rather than reported performance metrics. The survey identifies open challenges in standardization, domain shift, and clinical deployment, and outlines future directions such as hybrid radiomics-artificial intelligence models, multimodal fusion, federated learning, and standardized benchmarking.
Multi-domain image-to-image translation re quires grounding semantic differences ex pressed in natural language prompts into corresponding visual transformations, while preserving unrelated structural and seman tic content. Existing methods struggle to maintain structural integrity and provide fine grained, attribute-specific control, especially when multiple domains are involved. We propose LACE (Language-grounded Attribute Controllable Translation), built on two compo nents: (1) a GLIP-Adapter that fuses global semantics with local structural features to pre serve consistency, and (2) a Multi-Domain Control Guidance mechanism that explicitly grounds the semantic delta between source and target prompts into per-attribute translation vec tors, aligning linguistic semantics with domain level visual changes. Together, these modules enable compositional multi-domain control with independent strength modulation for each attribute. Experiments on CelebA(Dialog) and BDD100K demonstrate that LACE achieves high visual fidelity, structural preservation, and interpretable domain-specific control, surpass ing prior baselines. This positions LACE as a cross-modal content generation framework bridging language semantics and controllable visual translation.
We present TranslateGemma, a suite of open machine translation models based on the Gemma 3 foundation models. To enhance the inherent multilingual capabilities of Gemma 3 for the translation task, we employ a two-stage fine-tuning process. First, supervised fine-tuning is performed using a rich mixture of high-quality large-scale synthetic parallel data generated via state-of-the-art models and human-translated parallel data. This is followed by a reinforcement learning phase, where we optimize translation quality using an ensemble of reward models, including MetricX-QE and AutoMQM, targeting translation quality. We demonstrate the effectiveness of TranslateGemma with human evaluation on the WMT25 test set across 10 language pairs and with automatic evaluation on the WMT24++ benchmark across 55 language pairs. Automatic metrics show consistent and substantial gains over the baseline Gemma 3 models across all sizes. Notably, smaller TranslateGemma models often achieve performance comparable to larger baseline models, offering improved efficiency. We also show that TranslateGemma models retain strong multimodal capabilities, with enhanced performance on the Vistra image translation benchmark. The release of the open TranslateGemma models aims to provide the research community with powerful and adaptable tools for machine translation.
While text-to-image (T2I) models have advanced considerably, their capability to associate colors with implicit concepts remains underexplored. To address the gap, we introduce ColorConceptBench, a new human-annotated benchmark to systematically evaluate color-concept associations through the lens of probabilistic color distributions. ColorConceptBench moves beyond explicit color names or codes by probing how models translate 1,281 implicit color concepts using a foundation of 6,369 human annotations. Our evaluation of seven leading T2I models reveals that current models lack sensitivity to abstract semantics, and crucially, this limitation appears resistant to standard interventions (e.g., scaling and guidance). This demonstrates that achieving human-like color semantics requires more than larger models, but demands a fundamental shift in how models learn and represent implicit meaning.
Glaucoma is a top cause of irreversible blindness globally, making early detection and longitudinal follow-up pivotal to preventing permanent vision loss. Current screening and progression assessment, however, rely on single tests or loosely linked examinations, introducing subjectivity and fragmented care. Limited access to high-quality imaging tools and specialist expertise further compromises consistency and equity in real-world use. To address these gaps, we developed Fair-Eye Net, a fair, reliable multimodal AI system closing the clinical loop from glaucoma screening to follow-up and risk alerting. It integrates fundus photos, OCT structural metrics, VF functional indices, and demographic factors via a dual-stream heterogeneous fusion architecture, with an uncertainty-aware hierarchical gating strategy for selective prediction and safe referral. A fairness constraint reduces missed diagnoses in disadvantaged subgroups. Experimental results show it achieved an AUC of 0.912 (96.7% specificity), cut racial false-negativity disparity by 73.4% (12.31% to 3.28%), maintained stable cross-domain performance, and enabled 3-12 months of early risk alerts (92% sensitivity, 88% specificity). Unlike post hoc fairness adjustments, Fair-Eye Net optimizes fairness as a primary goal with clinical reliability via multitask learning, offering a reproducible path for clinical translation and large-scale deployment to advance global eye health equity.
Histopathology analysis relies on Hematoxylin and Eosin (H&E) staining, but fluorescence microscopy offers complementary information. Converting fluorescence images to H&E-like appearance can aid interpretation and integration with standard workflows. We present a Cycle-Consistent Adversarial Network (CycleGAN) approach for unpaired image-to-image translation from multi-channel fluorescence microscopy to pseudo H&E stained histopathology images. The method combines C01 and C02 fluorescence channels into RGB and learns a bidirectional mapping between fluorescence and H&E domains without paired training data. The architecture uses ResNet-based generators with residual blocks and PatchGAN discriminators, trained with adversarial, cycle-consistency, and identity losses. Experiments on fluorescence microscopy datasets show the model generates realistic pseudo H&E images that preserve morphological structures while adopting H&E-like color characteristics. This enables visualization of fluorescence data in a format familiar to pathologists and supports integration with existing H&E-based analysis pipelines.
Magnetic Resonance Imaging (MRI) provides detailed tissue information, but its clinical application is limited by long acquisition time, high cost, and restricted resolution. Image translation has recently gained attention as a strategy to address these limitations. Although Pix2Pix has been widely applied in medical image translation, its potential has not been fully explored. In this study, we propose an enhanced Pix2Pix framework that integrates Squeeze-and-Excitation Residual Networks (SEResNet) and U-Net++ to improve image generation quality and structural fidelity. SEResNet strengthens critical feature representation through channel attention, while U-Net++ enhances multi-scale feature fusion. A simplified PatchGAN discriminator further stabilizes training and refines local anatomical realism. Experimental results demonstrate that under few-shot conditions with fewer than 500 images, the proposed method achieves consistent structural fidelity and superior image quality across multiple intra-modality MRI translation tasks, showing strong generalization ability. These results suggest an effective extension of Pix2Pix for medical image translation.
Text-to-image (T2I) models are increasingly employed by users worldwide. However, prior research has pointed to the high sensitivity of T2I towards particular input languages - when faced with languages other than English (i.e., different surface forms of the same prompt), T2I models often produce culturally stereotypical depictions, prioritizing the surface over the prompt's semantics. Yet a comprehensive analysis of this behavior, which we dub Surface-over-Semantics (SoS), is missing. We present the first analysis of T2I models' SoS tendencies. To this end, we create a set of prompts covering 171 cultural identities, translated into 14 languages, and use it to prompt seven T2I models. To quantify SoS tendencies across models, languages, and cultures, we introduce a novel measure and analyze how the tendencies we identify manifest visually. We show that all but one model exhibit strong surface-level tendency in at least two languages, with this effect intensifying across the layers of T2I text encoders. Moreover, these surface tendencies frequently correlate with stereotypical visual depictions.
Iris recognition is a mature biometric technology offering remarkable precision and speed, and allowing for large-scale deployments to populations exceeding a billion enrolled users (e.g., AADHAAR in India). However, in forensic applications, a human expert may be needed to review and confirm a positive identification before an iris matching result can be presented as evidence in court, especially in cases where processed samples are degraded (e.g., in post-mortem cases) or where there is a need to judge whether the sample is authentic, rather than a result of a presentation attack. This paper presents a study that examines human performance in iris verification in two controlled scenarios: (a) under varying pupil sizes, with and without a linear/nonlinear alignment of the pupil size between compared images, and (b) when both genuine and impostor iris image pairs are synthetically generated. The results demonstrate that pupil size normalization carried out by a modern autoencoder-based identity-preserving image-to-image translation model significantly improves verification accuracy. Participants were also able to determine whether iris pairs corresponded to the same or different eyes when both images were either authentic or synthetic. However, accuracy declined when subjects were comparing authentic irises against high-quality, same-eye synthetic counterparts. These findings (a) demonstrate the importance of pupil-size alignment for iris matching tasks in which humans are involved, and (b) indicate that despite the high fidelity of modern generative models, same-eye synthetic iris images are more often judged by humans as different-eye images, compared to same-eye authentic image pairs. We offer data and human judgments along with this paper to allow full replicability of this study and future works.