Abstract:Attribute bias in federated learning (FL) typically leads local models to optimize inconsistently due to the learning of non-causal associations, resulting degraded performance. Existing methods either use data augmentation for increasing sample diversity or knowledge distillation for learning invariant representations to address this problem. However, they lack a comprehensive analysis of the inference paths, and the interference from confounding factors limits their performance. To address these limitations, we propose the \underline{Fed}erated \underline{D}econfounding and \underline{D}ebiasing \underline{L}earning (FedDDL) method. It constructs a structured causal graph to analyze the model inference process, and performs backdoor adjustment to eliminate confounding paths. Specifically, we design an intra-client deconfounding learning module for computer vision tasks to decouple background and objects, generating counterfactual samples that establish a connection between the background and any label, which stops the model from using the background to infer the label. Moreover, we design an inter-client debiasing learning module to construct causal prototypes to reduce the proportion of the background in prototype components. Notably, it bridges the gap between heterogeneous representations via causal prototypical regularization. Extensive experiments on 2 benchmarking datasets demonstrate that \methodname{} significantly enhances the model capability to focus on main objects in unseen data, leading to 4.5\% higher Top-1 Accuracy on average over 9 state-of-the-art existing methods.
Abstract:Federated learning aims to collaboratively model by integrating multi-source information to obtain a model that can generalize across all client data. Existing methods often leverage knowledge distillation or data augmentation to mitigate the negative impact of data bias across clients. However, the limited performance of teacher models on out-of-distribution samples and the inherent quality gap between augmented and original data hinder their effectiveness and they typically fail to leverage the advantages of incorporating rich contextual information. To address these limitations, this paper proposes a Federated Causal Augmentation method, termed FedCAug, which employs causality-inspired data augmentation to break the spurious correlation between attributes and categories. Specifically, it designs a causal region localization module to accurately identify and decouple the background and objects in the image, providing rich contextual information for causal data augmentation. Additionally, it designs a causality-inspired data augmentation module that integrates causal features and within-client context to generate counterfactual samples. This significantly enhances data diversity, and the entire process does not require any information sharing between clients, thereby contributing to the protection of data privacy. Extensive experiments conducted on three datasets reveal that FedCAug markedly reduces the model's reliance on background to predict sample labels, achieving superior performance compared to state-of-the-art methods.
Abstract:Cross-domain recommendation has attracted increasing attention from industry and academia recently. However, most existing methods do not exploit the interest invariance between domains, which would yield sub-optimal solutions. In this paper, we propose a cross-domain recommendation method: Self-supervised Interest Transfer Network (SITN), which can effectively transfer invariant knowledge between domains via prototypical contrastive learning. Specifically, we perform two levels of cross-domain contrastive learning: 1) instance-to-instance contrastive learning, 2) instance-to-cluster contrastive learning. Not only that, we also take into account users' multi-granularity and multi-view interests. With this paradigm, SITN can explicitly learn the invariant knowledge of interest clusters between domains and accurately capture users' intents and preferences. We conducted extensive experiments on a public dataset and a large-scale industrial dataset collected from one of the world's leading e-commerce corporations. The experimental results indicate that SITN achieves significant improvements over state-of-the-art recommendation methods. Additionally, SITN has been deployed on a micro-video recommendation platform, and the online A/B testing results further demonstrate its practical value. Supplement is available at: https://github.com/fanqieCoffee/SITN-Supplement.