Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Automatic speech recognition (ASR) for low-resource languages such as Taiwanese Hokkien is difficult due to the scarcity of annotated data. However, direct fine-tuning on Han-character transcriptions often fails to capture detailed phonetic and tonal cues, while training only on romanization lacks lexical and syntactic coverage. In addition, prior studies have rarely explored staged strategies that integrate both annotation types. To address this gap, we present CLiFT-ASR, a cross-lingual fine-tuning framework that builds on Mandarin HuBERT models and progressively adapts them to Taiwanese Hokkien. The framework employs a two-stage process in which it first learns acoustic and tonal representations from phonetic Tai-lo annotations and then captures vocabulary and syntax from Han-character transcriptions. This progressive adaptation enables effective alignment between speech sounds and orthographic structures. Experiments on the TAT-MOE corpus demonstrate that CLiFT-ASR achieves a 24.88\% relative reduction in character error rate (CER) compared with strong baselines. The results indicate that CLiFT-ASR provides an effective and parameter-efficient solution for Taiwanese Hokkien ASR and that it has potential to benefit other low-resource language scenarios.
We present MERaLiON-SER, a robust speech emotion recognition model designed for English and Southeast Asian languages. The model is trained using a hybrid objective combining weighted categorical cross-entropy and Concordance Correlation Coefficient (CCC) losses for joint discrete and dimensional emotion modelling. This dual approach enables the model to capture both the distinct categories of emotion (like happy or angry) and the fine-grained, such as arousal (intensity), valence (positivity/negativity), and dominance (sense of control), leading to a more comprehensive and robust representation of human affect. Extensive evaluations across multilingual Singaporean languages (English, Chinese, Malay, and Tamil ) and other public benchmarks show that MERaLiON-SER consistently surpasses both open-source speech encoders and large Audio-LLMs. These results underscore the importance of specialised speech-only models for accurate paralinguistic understanding and cross-lingual generalisation. Furthermore, the proposed framework provides a foundation for integrating emotion-aware perception into future agentic audio systems, enabling more empathetic and contextually adaptive multimodal reasoning.
Speech emotion recognition (SER) has advanced significantly for the sake of deep-learning methods, while textual information further enhances its performance. However, few studies have focused on the physiological information during speech production, which also encompasses speaker traits, including emotional states. To bridge this gap, we conducted a series of experiments to investigate the potential of the phonation excitation information and articulatory kinematics for SER. Due to the scarcity of training data for this purpose, we introduce a portrayed emotional dataset, STEM-E2VA, which includes audio and physiological data such as electroglottography (EGG) and electromagnetic articulography (EMA). EGG and EMA provide information of phonation excitation and articulatory kinematics, respectively. Additionally, we performed emotion recognition using estimated physiological data derived through inversion methods from speech, instead of collected EGG and EMA, to explore the feasibility of applying such physiological information in real-world SER. Experimental results confirm the effectiveness of incorporating physiological information about speech production for SER and demonstrate its potential for practical use in real-world scenarios.




Historical and low-resource NLP remains challenging due to limited annotated data and domain mismatches with modern, web-sourced corpora. This paper outlines our work in using large language models (LLMs) to create ground-truth annotations for historical French (16th-20th centuries) and Chinese (1900-1950) texts. By leveraging LLM-generated ground truth on a subset of our corpus, we were able to fine-tune spaCy to achieve significant gains on period-specific tests for part-of-speech (POS) annotations, lemmatization, and named entity recognition (NER). Our results underscore the importance of domain-specific models and demonstrate that even relatively limited amounts of synthetic data can improve NLP tools for under-resourced corpora in computational humanities research.
Robustness verification is a promising technique for rigorously proving Recurrent Neural Networks (RNNs) robustly. A key challenge is to over-approximate the nonlinear activation functions with linear constraints, which can transform the verification problem into an efficiently solvable linear programming problem. Existing methods over-approximate the nonlinear parts with linear bounding planes individually, which may cause significant over-estimation and lead to lower verification accuracy. In this paper, in order to tightly enclose the three-dimensional nonlinear surface generated by the Hadamard product, we propose a novel truncated rectangular prism formed by two linear relaxation planes and a refinement-driven method to minimize both its volume and surface area for tighter over-approximation. Based on this approximation, we implement a prototype DeepPrism for RNN robustness verification. The experimental results demonstrate that \emph{DeepPrism} has significant improvement compared with the state-of-the-art approaches in various tasks of image classification, speech recognition and sentiment analysis.
Significant progress has been made in spoken question answering (SQA) in recent years. However, many existing methods, including large audio language models, struggle with processing long audio. Follow the success of retrieval augmented generation, a speech-related retriever shows promising in help preprocessing long-form speech. But the performance of existing speech-related retrievers is lacking. To address this challenge, we propose CLSR, an end-to-end contrastive language-speech retriever that efficiently extracts question-relevant segments from long audio recordings for downstream SQA task. Unlike conventional speech-text contrastive models, CLSR incorporates an intermediate step that converts acoustic features into text-like representations prior to alignment, thereby more effectively bridging the gap between modalities. Experimental results across four cross-modal retrieval datasets demonstrate that CLSR surpasses both end-to-end speech related retrievers and pipeline approaches combining speech recognition with text retrieval, providing a robust foundation for advancing practical long-form SQA applications.
The Recurrent Neural Network-Transducer (RNN-T) is widely adopted in end-to-end (E2E) automatic speech recognition (ASR) tasks but depends heavily on large-scale, high-quality annotated data, which are often costly and difficult to obtain. To mitigate this reliance, we propose a Weakly Supervised Transducer (WST), which integrates a flexible training graph designed to robustly handle errors in the transcripts without requiring additional confidence estimation or auxiliary pre-trained models. Empirical evaluations on synthetic and industrial datasets reveal that WST effectively maintains performance even with transcription error rates of up to 70%, consistently outperforming existing Connectionist Temporal Classification (CTC)-based weakly supervised approaches, such as Bypass Temporal Classification (BTC) and Omni-Temporal Classification (OTC). These results demonstrate the practical utility and robustness of WST in realistic ASR settings. The implementation will be publicly available.
Large speech recognition models like Whisper-small achieve high accuracy but are difficult to deploy on edge devices due to their high computational demand. To this end, we present a unified, cross-library evaluation of post-training quantization (PTQ) on Whisper-small that disentangles the impact of quantization scheme, method, granularity, and bit-width. Our study is based on four libraries: PyTorch, Optimum-Quanto, HQQ, and bitsandbytes. Experiments on LibriSpeech test-clean and test-other show that dynamic int8 quantization with Quanto offers the best trade-off, reducing model size by 57% while improving on the baseline's word error rate. Static quantization performed worse, likely due to Whisper's Transformer architecture, while more aggressive formats (e.g., nf4, int3) achieved up to 71% compression at the cost of accuracy in noisy conditions. Overall, our results demonstrate that carefully chosen PTQ methods can substantially reduce model size and inference cost without retraining, enabling efficient deployment of Whisper-small on constrained hardware.
In da Vinci robotic surgery, surgeons' hands and eyes are fully engaged in the procedure, making it difficult to access and manipulate multimodal patient data without interruption. We propose a voice-directed Surgical Agent Orchestrator Platform (SAOP) built on a hierarchical multi-agent framework, consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to map voice commands into specific tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models on the surgical video. We also introduce a Multi-level Orchestration Evaluation Metric (MOEM) to comprehensively assess the performance and robustness from command-level and category-level perspectives. The SAOP achieves high accuracy and success rates across 240 voice commands, while LLM-based agents improve robustness against speech recognition errors and diverse or ambiguous free-form commands, demonstrating strong potential to support minimally invasive da Vinci robotic surgery.
Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.