Abstract:Speech emotion recognition (SER) plays a critical role in building emotion-aware speech systems, but its performance degrades significantly under noisy conditions. Although speech enhancement (SE) can improve robustness, it often introduces artifacts that obscure emotional cues and adds computational overhead to the pipeline. Multi-task learning (MTL) offers an alternative by jointly optimizing SE and SER tasks. However, conventional shared-backbone models frequently suffer from gradient interference and representational conflicts between tasks. To address these challenges, we propose the Sparse Mixture-of-Experts Representation Integration Technique (Sparse MERIT), a flexible MTL framework that applies frame-wise expert routing over self-supervised speech representations. Sparse MERIT incorporates task-specific gating networks that dynamically select from a shared pool of experts for each frame, enabling parameter-efficient and task-adaptive representation learning. Experiments on the MSP-Podcast corpus show that Sparse MERIT consistently outperforms baseline models on both SER and SE tasks. Under the most challenging condition of -5 dB signal-to-noise ratio (SNR), Sparse MERIT improves SER F1-macro by an average of 12.0% over a baseline relying on a SE pre-processing strategy, and by 3.4% over a naive MTL baseline, with statistical significance on unseen noise conditions. For SE, Sparse MERIT improves segmental SNR (SSNR) by 28.2% over the SE pre-processing baseline and by 20.0% over the naive MTL baseline. These results demonstrate that Sparse MERIT provides robust and generalizable performance for both emotion recognition and enhancement tasks in noisy environments.
Abstract:In this study, we revisit key training strategies in machine learning often overlooked in favor of deeper architectures. Specifically, we explore balancing strategies, activation functions, and fine-tuning techniques to enhance speech emotion recognition (SER) in naturalistic conditions. Our findings show that simple modifications improve generalization with minimal architectural changes. Our multi-modal fusion model, integrating these optimizations, achieves a valence CCC of 0.6953, the best valence score in Task 2: Emotional Attribute Regression. Notably, fine-tuning RoBERTa and WavLM separately in a single-modality setting, followed by feature fusion without training the backbone extractor, yields the highest valence performance. Additionally, focal loss and activation functions significantly enhance performance without increasing complexity. These results suggest that refining core components, rather than deepening models, leads to more robust SER in-the-wild.
Abstract:Deep learning techniques have shown promising results in the automatic classification of respiratory sounds. However, accurately distinguishing these sounds in real-world noisy conditions poses challenges for clinical deployment. Additionally, predicting signals with only background noise could undermine user trust in the system. In this study, we propose an audio enhancement (AE) pipeline as a pre-processing step before respiratory sound classification, aiming to improve performance in noisy environments. Multiple experiments were conducted using different audio enhancement model structures, demonstrating improved classification performance compared to the baseline method of noise injection data augmentation. Specifically, the integration of the AE pipeline resulted in a 2.59% increase in the ICBHI classification score on the ICBHI respiratory sound dataset and a 2.51% improvement on our recently collected Formosa Archive of Breath Sounds (FABS) in multi-class noisy scenarios. Furthermore, a physician validation study assessed the clinical utility of our system. Quantitative analysis revealed enhancements in efficiency, diagnostic confidence, and trust during model-assisted diagnosis with our system compared to raw noisy recordings. Workflows integrating enhanced audio led to an 11.61% increase in diagnostic sensitivity and facilitated high-confidence diagnoses. Our findings demonstrate that incorporating an audio enhancement algorithm significantly enhances robustness and clinical utility.