We propose a bottom-up framework for automatic speech recognition (ASR) in syllable-based languages by unifying language-universal articulatory attribute modeling with syllable-level prediction. The system first recognizes sequences or lattices of articulatory attributes that serve as a language-universal, interpretable representation of pronunciation, and then transforms them into syllables through a structured knowledge integration process. We introduce two evaluation metrics, namely Pronunciation Error Rate (PrER) and Syllable Homonym Error Rate (SHER), to evaluate the model's ability to capture pronunciation and handle syllable ambiguities. Experimental results on the AISHELL-1 Mandarin corpus demonstrate that the proposed bottom-up framework achieves competitive performance and exhibits better robustness under low-resource conditions compared to the direct syllable prediction model. Furthermore, we investigate the zero-shot cross-lingual transferability on Japanese and demonstrate significant improvements over character- and phoneme-based baselines by 40% error rate reduction.