Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Recent research has explored using Large Language Models for recommendation tasks by transforming user interaction histories and item metadata into text prompts, then having the LLM produce rankings or recommendations. A promising approach involves connecting collaborative filtering knowledge to LLM representations through compact adapter networks, which avoids expensive fine-tuning while preserving the strengths of both components. Yet several challenges persist in practice: collaborative filtering models often use static snapshots that miss rapidly changing user preferences; many real-world items contain rich visual and audio content beyond textual descriptions; and current systems struggle to provide trustworthy explanations backed by concrete evidence. Our work introduces \model{}, a framework that tackles these limitations through three key innovations. We develop an online adaptation mechanism that continuously incorporates new user interactions through lightweight modules, avoiding the need to retrain large models. We create a unified representation that seamlessly combines collaborative signals with visual and audio features, handling cases where some modalities may be unavailable. Finally, we design an explanation system that grounds recommendations in specific collaborative patterns and item attributes, producing natural language rationales users can verify. Our approach maintains the efficiency of frozen base models while adding minimal computational overhead, making it practical for real-world deployment.
Training large-scale recommendation models under a single global objective implicitly assumes homogeneity across user populations. However, real-world data are composites of heterogeneous cohorts with distinct conditional distributions. As models increase in scale and complexity and as more data is used for training, they become dominated by central distribution patterns, neglecting head and tail regions. This imbalance limits the model's learning ability and can result in inactive attention weights or dead neurons. In this paper, we reveal how the attention mechanism can play a key role in factorization machines for shared embedding selection, and propose to address this challenge by analyzing the substructures in the dataset and exposing those with strong distributional contrast through auxiliary learning. Unlike previous research, which heuristically applies weighted labels or multi-task heads to mitigate such biases, we leverage partially conflicting auxiliary labels to regularize the shared representation. This approach customizes the learning process of attention layers to preserve mutual information with minority cohorts while improving global performance. We evaluated C2AL on massive production datasets with billions of data points each for six SOTA models. Experiments show that the factorization machine is able to capture fine-grained user-ad interactions using the proposed method, achieving up to a 0.16% reduction in normalized entropy overall and delivering gains exceeding 0.30% on targeted minority cohorts.
The increasing complexity of clinical decision-making, alongside the rapid expansion of electronic health records (EHR), presents both opportunities and challenges for delivering data-informed care. This paper proposes a clinical decision support system powered by Large Language Models (LLMs) to assist prescribing clinicians. The system generates therapeutic suggestions by analyzing historical EHR data, including patient demographics, presenting complaints, clinical symptoms, diagnostic information, and treatment histories. The framework integrates natural language processing with structured clinical inputs to produce contextually relevant recommendations. Rather than replacing clinician judgment, it is designed to augment decision-making by retrieving and synthesizing precedent cases with comparable characteristics, drawing on local datasets or federated sources where applicable. At its core, the system employs a retrieval-augmented generation (RAG) pipeline that harmonizes unstructured narratives and codified data to support LLM-based inference. We outline the system's technical components, including representation representation alignment and generation strategies. Preliminary evaluations, conducted with de-identified and synthetic clinical datasets, examine the clinical plausibility and consistency of the model's outputs. Early findings suggest that LLM-based tools may provide valuable decision support in prescribing workflows when appropriately constrained and rigorously validated. This work represents an initial step toward integration of generative AI into real-world clinical decision-making with an emphasis on transparency, safety, and alignment with established practices.
Approximate Nearest-Neighbor Search (ANNS) efficiently finds data items whose embeddings are close to that of a given query in a high-dimensional space, aiming to balance accuracy with speed. Used in recommendation systems, image and video retrieval, natural language processing, and retrieval-augmented generation (RAG), ANNS algorithms such as IVFPQ, HNSW graphs, Annoy, and MRPT utilize graph, tree, clustering, and quantization techniques to navigate large vector spaces. Despite this progress, ANNS systems spend up to 99\% of query time to compute distances in their final refinement phase. In this paper, we present PANORAMA, a machine learning-driven approach that tackles the ANNS verification bottleneck through data-adaptive learned orthogonal transforms that facilitate the accretive refinement of distance bounds. Such transforms compact over 90\% of signal energy into the first half of dimensions, enabling early candidate pruning with partial distance computations. We integrate PANORAMA into state-of-the-art ANNS methods, namely IVFPQ/Flat, HNSW, MRPT, and Annoy, without index modification, using level-major memory layouts, SIMD-vectorized partial distance computations, and cache-aware access patterns. Experiments across diverse datasets -- from image-based CIFAR-10 and GIST to modern embedding spaces including OpenAI's Ada 2 and Large 3 -- demonstrate that PANORAMA affords a 2--30$\times$ end-to-end speedup with no recall loss.
Meta titles and descriptions strongly shape engagement in search and recommendation platforms, yet optimizing them remains challenging. Search engine ranking models are black box environments, explicit labels are unavailable, and feedback such as click-through rate (CTR) arrives only post-deployment. Existing template, LLM, and retrieval-augmented approaches either lack diversity, hallucinate attributes, or ignore whether candidate phrasing has historically succeeded in ranking. This leaves a gap in directly leveraging implicit signals from observable outcomes. We introduce MetaSynth, a multi-agent retrieval-augmented generation framework that learns from implicit search feedback. MetaSynth builds an exemplar library from top-ranked results, generates candidate snippets conditioned on both product content and exemplars, and iteratively refines outputs via evaluator-generator loops that enforce relevance, promotional strength, and compliance. On both proprietary e-commerce data and the Amazon Reviews corpus, MetaSynth outperforms strong baselines across NDCG, MRR, and rank metrics. Large-scale A/B tests further demonstrate 10.26% CTR and 7.51% clicks. Beyond metadata, this work contributes a general paradigm for optimizing content in black-box systems using implicit signals.
Audio descriptions (ADs) narrate important visual details in movies, enabling Blind and Low Vision (BLV) users to understand narratives and appreciate visual details. Existing works in automatic AD generation mostly focus on few-second trimmed clips, and evaluate them by comparing against a single ground-truth reference AD. However, writing ADs is inherently subjective. Through alignment and analysis of two independent AD tracks for the same movies, we quantify the subjectivity in when and whether to describe, and what and how to highlight. Thus, we show that working with trimmed clips is inadequate. We propose ADQA, a QA benchmark that evaluates ADs at the level of few-minute long, coherent video segments, testing whether they would help BLV users understand the story and appreciate visual details. ADQA features visual appreciation (VA) questions about visual facts and narrative understanding (NU) questions based on the plot. Through ADQA, we show that current AD generation methods lag far behind human-authored ADs. We conclude with several recommendations for future work and introduce a public leaderboard for benchmarking.
In many real-world applications such as recommendation systems, multiple learning agents must balance exploration and exploitation while maintaining safety guarantees to avoid catastrophic failures. We study the stochastic linear bandit problem in a multi-agent networked setting where agents must satisfy stage-wise conservative constraints. A network of $N$ agents collaboratively maximizes cumulative reward while ensuring that the expected reward at every round is no less than $(1-\alpha)$ times that of a baseline policy. Each agent observes local rewards with unknown parameters, but the network optimizes for the global parameter (average of local parameters). Agents communicate only with immediate neighbors, and each communication round incurs additional regret. We propose MA-SCLUCB (Multi-Agent Stage-wise Conservative Linear UCB), an episodic algorithm alternating between action selection and consensus-building phases. We prove that MA-SCLUCB achieves regret $\tilde{O}\left(\frac{d}{\sqrt{N}}\sqrt{T}\cdot\frac{\log(NT)}{\sqrt{\log(1/|\lambda_2|)}}\right)$ with high probability, where $d$ is the dimension, $T$ is the horizon, and $|\lambda_2|$ is the network's second largest eigenvalue magnitude. Our analysis shows: (i) collaboration yields $\frac{1}{\sqrt{N}}$ improvement despite local communication, (ii) communication overhead grows only logarithmically for well-connected networks, and (iii) stage-wise safety adds only lower-order regret. Thus, distributed learning with safety guarantees achieves near-optimal performance in reasonably connected networks.
The selection of datasets in recommender systems research lacks a systematic methodology. Researchers often select datasets based on popularity rather than empirical suitability. We developed the APS Explorer, a web application that implements the Algorithm Performance Space (APS) framework for informed dataset selection. The system analyzes 96 datasets using 28 algorithms across three metrics (nDCG, Hit Ratio, Recall) at five K-values. We extend the APS framework with a statistical based classification system that categorizes datasets into five difficulty levels based on quintiles. We also introduce a variance-normalized distance metric based on Mahalanobis distance to measure similarity. The APS Explorer was successfully developed with three interactive modules for visualizing algorithm performance, direct comparing algorithms, and analyzing dataset metadata. This tool shifts the process of selecting datasets from intuition-based to evidence-based practices, and it is publicly available at datasets.recommender-systems.com.
Model fingerprinting has emerged as a promising paradigm for claiming model ownership. However, robustness evaluations of these schemes have mostly focused on benign perturbations such as incremental fine-tuning, model merging, and prompting. Lack of systematic investigations into {\em adversarial robustness} against a malicious model host leaves current systems vulnerable. To bridge this gap, we first define a concrete, practical threat model against model fingerprinting. We then take a critical look at existing model fingerprinting schemes to identify their fundamental vulnerabilities. Based on these, we develop adaptive adversarial attacks tailored for each vulnerability, and demonstrate that these can bypass model authentication completely for ten recently proposed fingerprinting schemes while maintaining high utility of the model for the end users. Our work encourages fingerprint designers to adopt adversarial robustness by design. We end with recommendations for future fingerprinting methods.
Preschool children with language vulnerabilities -- such as developmental language disorders or immigration related language challenges -- often require support to strengthen their expressive language skills. Based on the principle of implicit learning, speech-language therapists (SLTs) typically embed target morphological structures (e.g., third person -s) into everyday interactions or game-based learning activities. Educators are recommended by SLTs to do the same. This approach demands precise linguistic knowledge and real-time production of various morphological forms (e.g., "Daddy wears these when he drives to work"). The task becomes even more demanding when educators or parent also must keep children engaged and manage turn-taking in a game-based activity. In the TalBot project our multiprofessional team have developed an application in which the Furhat conversational robot plays the word retrieval game "Alias" with children to improve language skills. Our application currently employs a large language model (LLM) to manage gameplay, dialogue, affective responses, and turn-taking. Our next step is to further leverage the capacity of LLMs so the robot can generate and deliver specific morphological targets during the game. We hypothesize that a robot could outperform humans at this task. Novel aspects of this approach are that the robot could ultimately serve as a model and tutor for both children and professionals and that using LLM capabilities in this context would support basic communication needs for children with language vulnerabilities. Our long-term goal is to create a robust LLM-based Robot-Assisted Language Learning intervention capable of teaching a variety of morphological structures across different languages.