Abstract:In recent years, various approaches have been proposed to leverage large language models (LLMs) for incorporating textual information about items into recommender systems. Existing methods primarily focus on either fine-tuning LLMs to generate recommendations or integrating LLM-based embeddings into downstream models. In this work, we follow the latter direction and propose \textbf{TextGCN}, which applies parameter-free graph convolution layers directly over LLM-based item-title embeddings, instead of learning ID-based embeddings as in traditional methods. By combining language semantics with graph message passing, this architecture achieves state-of-the-art zero-shot performance, significantly outperforming prior approaches. Furthermore, we introduce \textbf{TextGCN-MLP}, which extends TextGCN with a trainable multilayer perceptron trained using a contrastive loss, achieving state-of-the-art in-domain performance on recommendation benchmarks. However, the zero-shot performance of TextGCN-MLP remains lower than that of TextGCN, highlighting the trade-off between in-domain specialization and zero-shot generalization. We release our code on github at \href{https://github.com/ChernovAndrey/TFCE}{github.com/ChernovAndrey/TFCE}.
Abstract:Recent studies have shown that reducing symmetries in neural networks enhances linear mode connectivity between networks without requiring parameter space alignment, leading to improved performance in linearly interpolated neural networks. However, in practical applications, neural network interpolation is rarely used; instead, ensembles of networks are more common. In this paper, we empirically investigate the impact of reducing symmetries on the performance of deep ensembles and Mixture of Experts (MoE) across five datasets. Additionally, to explore deeper linear mode connectivity, we introduce the Mixture of Interpolated Experts (MoIE). Our results show that deep ensembles built on asymmetric neural networks achieve significantly better performance as ensemble size increases compared to their symmetric counterparts. In contrast, our experiments do not provide conclusive evidence on whether reducing symmetries affects both MoE and MoIE architectures.