What is Image Restoration? Image restoration is the process of improving the quality of an image by removing noise, blurring, or other distortions.
Papers and Code
Aug 10, 2025
Abstract:JPEG, as a widely used image compression standard, often introduces severe visual artifacts when achieving high compression ratios. Although existing deep learning-based restoration methods have made considerable progress, they often struggle to recover complex texture details, resulting in over-smoothed outputs. To overcome these limitations, we propose SODiff, a novel and efficient semantic-oriented one-step diffusion model for JPEG artifacts removal. Our core idea is that effective restoration hinges on providing semantic-oriented guidance to the pre-trained diffusion model, thereby fully leveraging its powerful generative prior. To this end, SODiff incorporates a semantic-aligned image prompt extractor (SAIPE). SAIPE extracts rich features from low-quality (LQ) images and projects them into an embedding space semantically aligned with that of the text encoder. Simultaneously, it preserves crucial information for faithful reconstruction. Furthermore, we propose a quality factor-aware time predictor that implicitly learns the compression quality factor (QF) of the LQ image and adaptively selects the optimal denoising start timestep for the diffusion process. Extensive experimental results show that our SODiff outperforms recent leading methods in both visual quality and quantitative metrics. Code is available at: https://github.com/frakenation/SODiff
* 7 pages, 5 figures. The code will be available at
\url{https://github.com/frakenation/SODiff}
Via

Aug 11, 2025
Abstract:Virtual try-on (VTON) is a crucial task for enhancing user experience in online shopping by generating realistic garment previews on personal photos. Although existing methods have achieved impressive results, they struggle with long-sleeve-to-short-sleeve conversions-a common and practical scenario-often producing unrealistic outputs when exposed skin is underrepresented in the original image. We argue that this challenge arises from the ''majority'' completion rule in current VTON models, which leads to inaccurate skin restoration in such cases. To address this, we propose UR-VTON (Undress-Redress Virtual Try-ON), a novel, training-free framework that can be seamlessly integrated with any existing VTON method. UR-VTON introduces an ''undress-to-redress'' mechanism: it first reveals the user's torso by virtually ''undressing,'' then applies the target short-sleeve garment, effectively decomposing the conversion into two more manageable steps. Additionally, we incorporate Dynamic Classifier-Free Guidance scheduling to balance diversity and image quality during DDPM sampling, and employ Structural Refiner to enhance detail fidelity using high-frequency cues. Finally, we present LS-TON, a new benchmark for long-sleeve-to-short-sleeve try-on. Extensive experiments demonstrate that UR-VTON outperforms state-of-the-art methods in both detail preservation and image quality. Code will be released upon acceptance.
* 13 pages, 8 figures
Via

Jul 30, 2025
Abstract:Adverse weather conditions cause diverse and complex degradation patterns, driving the development of All-in-One (AiO) models. However, recent AiO solutions still struggle to capture diverse degradations, since global filtering methods like direct operations on the frequency domain fail to handle highly variable and localized distortions. To address these issue, we propose Spectral-based Spatial Grouping Transformer (SSGformer), a novel approach that leverages spectral decomposition and group-wise attention for multi-weather image restoration. SSGformer decomposes images into high-frequency edge features using conventional edge detection and low-frequency information via Singular Value Decomposition. We utilize multi-head linear attention to effectively model the relationship between these features. The fused features are integrated with the input to generate a grouping-mask that clusters regions based on the spatial similarity and image texture. To fully leverage this mask, we introduce a group-wise attention mechanism, enabling robust adverse weather removal and ensuring consistent performance across diverse weather conditions. We also propose a Spatial Grouping Transformer Block that uses both channel attention and spatial attention, effectively balancing feature-wise relationships and spatial dependencies. Extensive experiments show the superiority of our approach, validating its effectiveness in handling the varied and intricate adverse weather degradations.
* accepted by ICCV25
Via

Aug 07, 2025
Abstract:Image colorization, the task of adding colors to grayscale images, has been the focus of significant research efforts in computer vision in recent years for its various application areas such as color restoration and automatic animation colorization [15, 1]. The colorization problem is challenging as it is highly ill-posed with two out of three image dimensions lost, resulting in large degrees of freedom. However, semantics of the scene as well as the surface texture could provide important cues for colors: the sky is typically blue, the clouds are typically white and the grass is typically green, and there are huge amounts of training data available for learning such priors since any colored image could serve as a training data point [20]. Colorization is initially formulated as a regression task[5], which ignores the multi-modal nature of color prediction. In this project, we explore automatic image colorization via classification and adversarial learning. We will build our models on prior works, apply modifications for our specific scenario and make comparisons.
* 5 pages, 4 figures
Via

Jul 23, 2025
Abstract:Transformers, with their self-attention mechanisms for modeling long-range dependencies, have become a dominant paradigm in image restoration tasks. However, the high computational cost of self-attention limits scalability to high-resolution images, making efficiency-quality trade-offs a key research focus. To address this, Restormer employs channel-wise self-attention, which computes attention across channels instead of spatial dimensions. While effective, this approach may overlook localized artifacts that are crucial for high-quality image restoration. To bridge this gap, we explore Dilated Neighborhood Attention (DiNA) as a promising alternative, inspired by its success in high-level vision tasks. DiNA balances global context and local precision by integrating sliding-window attention with mixed dilation factors, effectively expanding the receptive field without excessive overhead. However, our preliminary experiments indicate that directly applying this global-local design to the classic deblurring task hinders accurate visual restoration, primarily due to the constrained global context understanding within local attention. To address this, we introduce a channel-aware module that complements local attention, effectively integrating global context without sacrificing pixel-level precision. The proposed DiNAT-IR, a Transformer-based architecture specifically designed for image restoration, achieves competitive results across multiple benchmarks, offering a high-quality solution for diverse low-level computer vision problems.
Via

Aug 10, 2025
Abstract:The existing image manipulation localization (IML) models mainly relies on visual cues, but ignores the semantic logical relationships between content features. In fact, the content semantics conveyed by real images often conform to human cognitive laws. However, image manipulation technology usually destroys the internal relationship between content features, thus leaving semantic clues for IML. In this paper, we propose a cognition-inspired multimodal boundary-preserving network (CMB-Net). Specifically, CMB-Net utilizes large language models (LLMs) to analyze manipulated regions within images and generate prompt-based textual information to compensate for the lack of semantic relationships in the visual information. Considering that the erroneous texts induced by hallucination from LLMs will damage the accuracy of IML, we propose an image-text central ambiguity module (ITCAM). It assigns weights to the text features by quantifying the ambiguity between text and image features, thereby ensuring the beneficial impact of textual information. We also propose an image-text interaction module (ITIM) that aligns visual and text features using a correlation matrix for fine-grained interaction. Finally, inspired by invertible neural networks, we propose a restoration edge decoder (RED) that mutually generates input and output features to preserve boundary information in manipulated regions without loss. Extensive experiments show that CMB-Net outperforms most existing IML models.
Via

Jul 30, 2025
Abstract:Underwater images typically suffer from severe colour distortions, low visibility, and reduced structural clarity due to complex optical effects such as scattering and absorption, which greatly degrade their visual quality and limit the performance of downstream visual perception tasks. Existing enhancement methods often struggle to adaptively handle diverse degradation conditions and fail to leverage underwater-specific physical priors effectively. In this paper, we propose a degradation-aware conditional diffusion model to enhance underwater images adaptively and robustly. Given a degraded underwater image as input, we first predict its degradation level using a lightweight dual-stream convolutional network, generating a continuous degradation score as semantic guidance. Based on this score, we introduce a novel conditional diffusion-based restoration network with a Swin UNet backbone, enabling adaptive noise scheduling and hierarchical feature refinement. To incorporate underwater-specific physical priors, we further propose a degradation-guided adaptive feature fusion module and a hybrid loss function that combines perceptual consistency, histogram matching, and feature-level contrast. Comprehensive experiments on benchmark datasets demonstrate that our method effectively restores underwater images with superior colour fidelity, perceptual quality, and structural details. Compared with SOTA approaches, our framework achieves significant improvements in both quantitative metrics and qualitative visual assessments.
* accepted by ACM MM 2025
Via

Aug 09, 2025
Abstract:Flattening curved, wrinkled, and rotated document images captured by portable photographing devices, termed document image dewarping, has become an increasingly important task with the rise of digital economy and online working. Although many methods have been proposed recently, they often struggle to achieve satisfactory results when confronted with intricate document structures and higher degrees of deformation in real-world scenarios. Our main insight is that, unlike other document restoration tasks (e.g., deblurring), dewarping in real physical scenes is a progressive motion rather than a one-step transformation. Based on this, we have undertaken two key initiatives. Firstly, we reformulate this task, modeling it for the first time as a dynamic process that encompasses a series of intermediate states. Secondly, we design a lightweight framework called TADoc (Time-Aware Document Dewarping Network) to address the geometric distortion of document images. In addition, due to the inadequacy of OCR metrics for document images containing sparse text, the comprehensiveness of evaluation is insufficient. To address this shortcoming, we propose a new metric -- DLS (Document Layout Similarity) -- to evaluate the effectiveness of document dewarping in downstream tasks. Extensive experiments and in-depth evaluations have been conducted and the results indicate that our model possesses strong robustness, achieving superiority on several benchmarks with different document types and degrees of distortion.
* 8 pages, 8 figures
Via

Aug 01, 2025
Abstract:The event camera, benefiting from its high dynamic range and low latency, provides performance gain for low-light image enhancement. Unlike frame-based cameras, it records intensity changes with extremely high temporal resolution, capturing sufficient structure information. Currently, existing event-based methods feed a frame and events directly into a single model without fully exploiting modality-specific advantages, which limits their performance. Therefore, by analyzing the role of each sensing modality, the enhancement pipeline is decoupled into two stages: visibility restoration and structure refinement. In the first stage, we design a visibility restoration network with amplitude-phase entanglement by rethinking the relationship between amplitude and phase components in Fourier space. In the second stage, a fusion strategy with dynamic alignment is proposed to mitigate the spatial mismatch caused by the temporal resolution discrepancy between two sensing modalities, aiming to refine the structure information of the image enhanced by the visibility restoration network. In addition, we utilize spatial-frequency interpolation to simulate negative samples with diverse illumination, noise and artifact degradations, thereby developing a contrastive loss that encourages the model to learn discriminative representations. Experiments demonstrate that the proposed method outperforms state-of-the-art models.
* Accepted by ACM MM 2025
Via

Jul 27, 2025
Abstract:Low-light image enhancement (LLIE) is a fundamental yet challenging task due to the presence of noise, loss of detail, and poor contrast in images captured under insufficient lighting conditions. Recent methods often rely solely on pixel-level transformations of RGB images, neglecting the rich contextual information available from multiple visual modalities. In this paper, we present ModalFormer, the first large-scale multimodal framework for LLIE that fully exploits nine auxiliary modalities to achieve state-of-the-art performance. Our model comprises two main components: a Cross-modal Transformer (CM-T) designed to restore corrupted images while seamlessly integrating multimodal information, and multiple auxiliary subnetworks dedicated to multimodal feature reconstruction. Central to the CM-T is our novel Cross-modal Multi-headed Self-Attention mechanism (CM-MSA), which effectively fuses RGB data with modality-specific features--including deep feature embeddings, segmentation information, geometric cues, and color information--to generate information-rich hybrid attention maps. Extensive experiments on multiple benchmark datasets demonstrate ModalFormer's state-of-the-art performance in LLIE. Pre-trained models and results are made available at https://github.com/albrateanu/ModalFormer.
Via
