Abstract:While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice.
Abstract:Model editing has become an increasingly popular alternative for efficiently updating knowledge within language models. Current methods mainly focus on reliability, generalization, and locality, with many methods excelling across these criteria. Some recent works disclose the pitfalls of these editing methods such as knowledge distortion or conflict. However, the general abilities of post-edited language models remain unexplored. In this paper, we perform a comprehensive evaluation on various editing methods and different language models, and have following findings. (1) Existing editing methods lead to inevitable performance deterioration on general benchmarks, indicating that existing editing methods maintain the general abilities of the model within only a few dozen edits. When the number of edits is slightly large, the intrinsic knowledge structure of the model is disrupted or even completely damaged. (2) Instruction-tuned models are more robust to editing, showing less performance drop on general knowledge after editing. (3) Language model with large scale is more resistant to editing compared to small model. (4) The safety of the edited model, is significantly weakened, even for those safety-aligned models. Our findings indicate that current editing methods are only suitable for small-scale knowledge updates within language models, which motivates further research on more practical and reliable editing methods. The details of code and reproduction can be found in https://github.com/lqinfdim/EditingEvaluation.
Abstract:The reconstruction of physical fields from sparse measurements is pivotal in both scientific research and engineering applications. Traditional methods are increasingly supplemented by deep learning models due to their efficacy in extracting features from data. However, except for the low accuracy on complex physical systems, these models often fail to comply with essential physical constraints, such as governing equations and boundary conditions. To overcome this limitation, we introduce a novel data-driven field reconstruction framework, termed the Physics-aligned Schr\"{o}dinger Bridge (PalSB). This framework leverages a diffusion Schr\"{o}dinger bridge mechanism that is specifically tailored to align with physical constraints. The PalSB approach incorporates a dual-stage training process designed to address both local reconstruction mapping and global physical principles. Additionally, a boundary-aware sampling technique is implemented to ensure adherence to physical boundary conditions. We demonstrate the effectiveness of PalSB through its application to three complex nonlinear systems: cylinder flow from Particle Image Velocimetry experiments, two-dimensional turbulence, and a reaction-diffusion system. The results reveal that PalSB not only achieves higher accuracy but also exhibits enhanced compliance with physical constraints compared to existing methods. This highlights PalSB's capability to generate high-quality representations of intricate physical interactions, showcasing its potential for advancing field reconstruction techniques.
Abstract:Driven by powerful image diffusion models, recent research has achieved the automatic creation of 3D objects from textual or visual guidance. By performing score distillation sampling (SDS) iteratively across different views, these methods succeed in lifting 2D generative prior to the 3D space. However, such a 2D generative image prior bakes the effect of illumination and shadow into the texture. As a result, material maps optimized by SDS inevitably involve spurious correlated components. The absence of precise material definition makes it infeasible to relight the generated assets reasonably in novel scenes, which limits their application in downstream scenarios. In contrast, humans can effortlessly circumvent this ambiguity by deducing the material of the object from its appearance and semantics. Motivated by this insight, we propose MaterialSeg3D, a 3D asset material generation framework to infer underlying material from the 2D semantic prior. Based on such a prior model, we devise a mechanism to parse material in 3D space. We maintain a UV stack, each map of which is unprojected from a specific viewpoint. After traversing all viewpoints, we fuse the stack through a weighted voting scheme and then employ region unification to ensure the coherence of the object parts. To fuel the learning of semantics prior, we collect a material dataset, named Materialized Individual Objects (MIO), which features abundant images, diverse categories, and accurate annotations. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our method.
Abstract:Transfer learning has aroused great interest in the statistical community. In this article, we focus on knowledge transfer for unsupervised learning tasks in contrast to the supervised learning tasks in the literature. Given the transferable source populations, we propose a two-step transfer learning algorithm to extract useful information from multiple source principal component analysis (PCA) studies, thereby enhancing estimation accuracy for the target PCA task. In the first step, we integrate the shared subspace information across multiple studies by a proposed method named as Grassmannian barycenter, instead of directly performing PCA on the pooled dataset. The proposed Grassmannian barycenter method enjoys robustness and computational advantages in more general cases. Then the resulting estimator for the shared subspace from the first step is further utilized to estimate the target private subspace in the second step. Our theoretical analysis credits the gain of knowledge transfer between PCA studies to the enlarged eigenvalue gap, which is different from the existing supervised transfer learning tasks where sparsity plays the central role. In addition, we prove that the bilinear forms of the empirical spectral projectors have asymptotic normality under weaker eigenvalue gap conditions after knowledge transfer. When the set of informativesources is unknown, we endow our algorithm with the capability of useful dataset selection by solving a rectified optimization problem on the Grassmann manifold, which in turn leads to a computationally friendly rectified Grassmannian K-means procedure. In the end, extensive numerical simulation results and a real data case concerning activity recognition are reported to support our theoretical claims and to illustrate the empirical usefulness of the proposed transfer learning methods.
Abstract:Existing research on audio classification faces challenges in recognizing attributes of passive underwater vessel scenarios and lacks well-annotated datasets due to data privacy concerns. In this study, we introduce CLAPP (Contrastive Language-Audio Pre-training in Passive Underwater Vessel Classification), a novel model. Our aim is to train a neural network using a wide range of vessel audio and vessel state text pairs obtained from an oceanship dataset. CLAPP is capable of directly learning from raw vessel audio data and, when available, from carefully curated labels, enabling improved recognition of vessel attributes in passive underwater vessel scenarios. Model's zero-shot capability allows predicting the most relevant vessel state description for a given vessel audio, without directly optimizing for the task. Our approach aims to solve 2 challenges: vessel audio-text classification and passive underwater vessel audio attribute recognition. The proposed method achieves new state-of-the-art results on both Deepship and Shipsear public datasets, with a notable margin of about 7%-13% for accuracy compared to prior methods on zero-shot task.
Abstract:Radio frequency (RF) signal mapping, which is the process of analyzing and predicting the RF signal strength and distribution across specific areas, is crucial for cellular network planning and deployment. Traditional approaches to RF signal mapping rely on statistical models constructed based on measurement data, which offer low complexity but often lack accuracy, or ray tracing tools, which provide enhanced precision for the target area but suffer from increased computational complexity. Recently, machine learning (ML) has emerged as a data-driven method for modeling RF signal propagation, which leverages models trained on synthetic datasets to perform RF signal mapping in "unseen" areas. In this paper, we present Geo2SigMap, an ML-based framework for efficient and high-fidelity RF signal mapping using geographic databases. First, we develop an automated framework that seamlessly integrates three open-source tools: OpenStreetMap (geographic databases), Blender (computer graphics), and Sionna (ray tracing), enabling the efficient generation of large-scale 3D building maps and ray tracing models. Second, we propose a cascaded U-Net model, which is pre-trained on synthetic datasets and employed to generate detailed RF signal maps, leveraging environmental information and sparse measurement data. Finally, we evaluate the performance of Geo2SigMap via a real-world measurement campaign, where three types of user equipment (UE) collect over 45,000 data points related to cellular information from six LTE cells operating in the citizens broadband radio service (CBRS) band. Our results show that Geo2SigMap achieves an average root-mean-square-error (RMSE) of 6.04 dB for predicting the reference signal received power (RSRP) at the UE, representing an average RMSE improvement of 3.59 dB compared to existing methods.
Abstract:The widespread use of deep learning technology across various industries has made deep neural network models highly valuable and, as a result, attractive targets for potential attackers. Model extraction attacks, particularly query-based model extraction attacks, allow attackers to replicate a substitute model with comparable functionality to the victim model and present a significant threat to the confidentiality and security of MLaaS platforms. While many studies have explored threats of model extraction attacks against classification models in recent years, object detection models, which are more frequently used in real-world scenarios, have received less attention. In this paper, we investigate the challenges and feasibility of query-based model extraction attacks against object detection models and propose an effective attack method called MEAOD. It selects samples from the attacker-possessed dataset to construct an efficient query dataset using active learning and enhances the categories with insufficient objects. We additionally improve the extraction effectiveness by updating the annotations of the query dataset. According to our gray-box and black-box scenarios experiments, we achieve an extraction performance of over 70% under the given condition of a 10k query budget.
Abstract:Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.
Abstract:A huge number of multi-participant dialogues happen online every day, which leads to difficulty in understanding the nature of dialogue dynamics for both humans and machines. Dialogue disentanglement aims at separating an entangled dialogue into detached sessions, thus increasing the readability of long disordered dialogue. Previous studies mainly focus on message-pair classification and clustering in two-step methods, which cannot guarantee the whole clustering performance in a dialogue. To address this challenge, we propose a simple yet effective model named CluCDD, which aggregates utterances by contrastive learning. More specifically, our model pulls utterances in the same session together and pushes away utterances in different ones. Then a clustering method is adopted to generate predicted clustering labels. Comprehensive experiments conducted on the Movie Dialogue dataset and IRC dataset demonstrate that our model achieves a new state-of-the-art result.