Text classification is the process of categorizing text documents into predefined categories or labels.
Hate speech detection on social media faces challenges in both accuracy and explainability, especially for underexplored Indic languages. We propose a novel explainability-guided training framework, X-MuTeST (eXplainable Multilingual haTe Speech deTection), for hate speech detection that combines high-level semantic reasoning from large language models (LLMs) with traditional attention-enhancing techniques. We extend this research to Hindi and Telugu alongside English by providing benchmark human-annotated rationales for each word to justify the assigned class label. The X-MuTeST explainability method computes the difference between the prediction probabilities of the original text and those of unigrams, bigrams, and trigrams. Final explanations are computed as the union between LLM explanations and X-MuTeST explanations. We show that leveraging human rationales during training enhances both classification performance and explainability. Moreover, combining human rationales with our explainability method to refine the model attention yields further improvements. We evaluate explainability using Plausibility metrics such as Token-F1 and IOU-F1 and Faithfulness metrics such as Comprehensiveness and Sufficiency. By focusing on under-resourced languages, our work advances hate speech detection across diverse linguistic contexts. Our dataset includes token-level rationale annotations for 6,004 Hindi, 4,492 Telugu, and 6,334 English samples. Data and code are available on https://github.com/ziarehman30/X-MuTeST
Current foundation models for 3D shapes excel at global tasks (retrieval, classification) but transfer poorly to local part-level reasoning. Recent approaches leverage vision and language foundation models to directly solve dense tasks through multi-view renderings and text queries. While promising, these pipelines require expensive inference over multiple renderings, depend heavily on large language-model (LLM) prompt engineering for captions, and fail to exploit the inherent 3D geometry of shapes. We address this gap by introducing an encoder-only 3D model that produces language-aligned patch-level features directly from point clouds. Our pre-training approach builds on existing data engines that generate part-annotated 3D shapes by pairing multi-view SAM regions with VLM captioning. Using this data, we train a point cloud transformer encoder in two stages: (1) distillation of dense 2D features from visual encoders such as DINOv2 into 3D patches, and (2) alignment of these patch embeddings with part-level text embeddings through a multi-positive contrastive objective. Our 3D encoder achieves zero-shot 3D part segmentation with fast single-pass inference without any test-time multi-view rendering, while significantly outperforming previous rendering-based and feed-forward approaches across several 3D part segmentation benchmarks. Project website: https://souhail-hadgi.github.io/patchalign3dsite/
Existing text-driven infrared and visible image fusion approaches often rely on textual information at the sentence level, which can lead to semantic noise from redundant text and fail to fully exploit the deeper semantic value of textual information. To address these issues, we propose a novel fusion approach named Entity-Guided Multi-Task learning for infrared and visible image fusion (EGMT). Our approach includes three key innovative components: (i) A principled method is proposed to extract entity-level textual information from image captions generated by large vision-language models, eliminating semantic noise from raw text while preserving critical semantic information; (ii) A parallel multi-task learning architecture is constructed, which integrates image fusion with a multi-label classification task. By using entities as pseudo-labels, the multi-label classification task provides semantic supervision, enabling the model to achieve a deeper understanding of image content and significantly improving the quality and semantic density of the fused image; (iii) An entity-guided cross-modal interactive module is also developed to facilitate the fine-grained interaction between visual and entity-level textual features, which enhances feature representation by capturing cross-modal dependencies at both inter-visual and visual-entity levels. To promote the wide application of the entity-guided image fusion framework, we release the entity-annotated version of four public datasets (i.e., TNO, RoadScene, M3FD, and MSRS). Extensive experiments demonstrate that EGMT achieves superior performance in preserving salient targets, texture details, and semantic consistency, compared to the state-of-the-art methods. The code and dataset will be publicly available at https://github.com/wyshao-01/EGMT.
This work addresses critical challenges to academic integrity, including plagiarism, fabrication, and verification of authorship of educational content, by proposing a Natural Language Processing (NLP)-based framework for authenticating students' content through author attribution and style change detection. Despite some initial efforts, several aspects of the topic are yet to be explored. In contrast to existing solutions, the paper provides a comprehensive analysis of the topic by targeting four relevant tasks, including (i) classification of human and machine text, (ii) differentiating in single and multi-authored documents, (iii) author change detection within multi-authored documents, and (iv) author recognition in collaboratively produced documents. The solutions proposed for the tasks are evaluated on two datasets generated with Gemini using two different prompts, including a normal and a strict set of instructions. During experiments, some reduction in the performance of the proposed solutions is observed on the dataset generated through the strict prompt, demonstrating the complexities involved in detecting machine-generated text with cleverly crafted prompts. The generated datasets, code, and other relevant materials are made publicly available on GitHub, which are expected to provide a baseline for future research in the domain.
The availability of structured legal data is important for advancing Natural Language Processing (NLP) techniques for the German legal system. One of the most widely used datasets, Open Legal Data, provides a large-scale collection of German court decisions. While the metadata in this raw dataset is consistently structured, the decision texts themselves are inconsistently formatted and often lack clearly marked sections. Reliable separation of these sections is important not only for rhetorical role classification but also for downstream tasks such as retrieval and citation analysis. In this work, we introduce a cleaned and sectioned dataset of 251,038 German court decisions derived from the official Open Legal Data dataset. We systematically separated three important sections in German court decisions, namely Tenor (operative part of the decision), Tatbestand (facts of the case), and Entscheidungsgründe (judicial reasoning), which are often inconsistently represented in the original dataset. To ensure the reliability of our extraction process, we used Cochran's formula with a 95% confidence level and a 5% margin of error to draw a statistically representative random sample of 384 cases, and manually verified that all three sections were correctly identified. We also extracted the Rechtsmittelbelehrung (appeal notice) as a separate field, since it is a procedural instruction and not part of the decision itself. The resulting corpus is publicly available in the JSONL format, making it an accessible resource for further research on the German legal system.
Large Language Models (LLMs) have been emerging as prominent AI models for solving many natural language tasks due to their high performance (e.g., accuracy) and capabilities in generating high-quality responses to the given inputs. However, their large computational cost, huge memory footprints, and high processing power/energy make it challenging for their embedded deployments. Amid several tinyLLMs, recent works have proposed spike-driven language models (SLMs) for significantly reducing the processing power/energy of LLMs. However, their memory footprints still remain too large for low-cost and resource-constrained embedded devices. Manual quantization approach may effectively compress SLM memory footprints, but it requires a huge design time and compute power to find the quantization setting for each network, hence making this approach not-scalable for handling different networks, performance requirements, and memory budgets. To bridge this gap, we propose QSLM, a novel framework that performs automated quantization for compressing pre-trained SLMs, while meeting the performance and memory constraints. To achieve this, QSLM first identifies the hierarchy of the given network architecture and the sensitivity of network layers under quantization, then employs a tiered quantization strategy (e.g., global-, block-, and module-level quantization) while leveraging a multi-objective performance-and-memory trade-off function to select the final quantization setting. Experimental results indicate that our QSLM reduces memory footprint by up to 86.5%, reduces power consumption by up to 20%, maintains high performance across different tasks (i.e., by up to 84.4% accuracy of sentiment classification on the SST-2 dataset and perplexity score of 23.2 for text generation on the WikiText-2 dataset) close to the original non-quantized model while meeting the performance and memory constraints.
We introduce EmoLoom-2B, a lightweight and reproducible pipeline that turns small language models under 2B parameters into fast screening candidates for joint emotion classification and Valence-Arousal-Dominance prediction. To ensure protocol-faithful and fair evaluation, we unify data loading, training, and inference under a single JSON input-output contract and remove avoidable variance by adopting KV-off decoding as the default setting. We incorporate two orthogonal semantic regularizers: a VAD-preserving constraint that aligns generated text with target VAD triples, and a lightweight external appraisal classifier that provides training-time guidance on goal attainment, controllability, certainty, and fairness without injecting long rationales. To improve polarity sensitivity, we introduce Valence Flip augmentation based on mirrored emotional pairs. During supervised fine-tuning, we apply A/B mixture sampling with entropy-aware temperature scheduling to balance coverage and convergence. Using Qwen-1.8B-Chat as the base model, EmoLoom-2B achieves strong performance on GoEmotions and EmpatheticDialogues, and demonstrates robust cross-corpus generalization on DailyDialog. The proposed recipe is budget-aware, auditable, and re-entrant, serving as a dependable screening pass before heavier training or multimodal fusion.
Transformer classifiers such as BERT deliver impressive closed-set accuracy, yet they remain brittle when confronted with inputs from unseen categories--a common scenario for deployed NLP systems. We investigate Open-Set Recognition (OSR) for text by porting the feature attenuation hypothesis from computer vision to transformers and by benchmarking it against state-of-the-art baselines. Concretely, we adapt the COSTARR framework--originally designed for classification in computer vision--to two modest language models (BERT (base) and GPT-2) trained to label 176 arXiv subject areas. Alongside COSTARR, we evaluate Maximum Softmax Probability (MSP), MaxLogit, and the temperature-scaled free-energy score under the OOSA and AUOSCR metrics. Our results show (i) COSTARR extends to NLP without retraining but yields no statistically significant gain over MaxLogit or MSP, and (ii) free-energy lags behind all other scores in this high-class-count setting. The study highlights both the promise and the current limitations of transplanting vision-centric OSR ideas to language models, and points toward the need for larger backbones and task-tailored attenuation strategies.
Semantic text classification has undergone significant advances in recent years due to the rise of large language models (LLMs) and their high dimensional embeddings. While LLM-embeddings are frequently used to store and retrieve text by semantic similarity in vector databases, the global structure semantic relationships in text corpora often remains opaque. Herein we propose a nested density clustering approach, to infer hierarchical trees of semantically related texts. The method starts by identifying texts of strong semantic similarity as it searches for dense clusters in LLM embedding space. As the density criterion is gradually relaxed, these dense clusters merge into more diffuse clusters, until the whole dataset is represented by a single cluster -- the root of the tree. By embedding dense clusters into increasingly diffuse ones, we construct a tree structure that captures hierarchical semantic relationships among texts. We outline how this approach can be used to classify textual data for abstracts of scientific abstracts as a case study. This enables the data-driven discovery research areas and their subfields without predefined categories. To evaluate the general applicability of the method, we further apply it to established benchmark datasets such as the 20 Newsgroups and IMDB 50k Movie Reviews, demonstrating its robustness across domains. Finally we discuss possible applications on scientometrics, topic evolution, highlighting how nested density trees can reveal semantic structure and evolution in textual datasets.
While foundation models in radiology are expected to be applied to various clinical tasks, computational cost constraints remain a major challenge when training on 3D-CT volumetric data. In this study, we propose TotalFM, a radiological foundation model that efficiently learns the correspondence between 3D-CT images and linguistic expressions based on the concept of organ separation, utilizing a large-scale dataset of 140,000 series. By automating the creation of organ volume and finding-sentence pairs through segmentation techniques and Large Language Model (LLM)-based radiology report processing, and by combining self-supervised pre-training via VideoMAE with contrastive learning using volume-text pairs, we aimed to balance computational efficiency and representation capability. In zero-shot organ-wise lesion classification tasks, the proposed model achieved higher F1 scores in 83% (5/6) of organs compared to CT-CLIP and 64% (9/14) of organs compared to Merlin. These results suggest that the proposed model exhibits high generalization performance in a clinical evaluation setting using actual radiology report sentences. Furthermore, in zero-shot finding-wise lesion classification tasks, our model achieved a higher AUROC in 83% (25/30) of finding categories compared to Merlin. We also confirmed performance comparable to existing Vision-Language Models (VLMs) in radiology report generation tasks. Our results demonstrate that the organ-separated learning framework can serve as a realistic and effective design guideline for the practical implementation of 3D-CT foundation models.