Text classification is the process of categorizing text documents into predefined categories or labels.
The rise of large language models (LLMs) has enabled the generation of highly persuasive spam reviews that closely mimic human writing. These reviews pose significant challenges for existing detection systems and threaten the credibility of online platforms. In this work, we first create three realistic LLM-generated spam review datasets using three distinct LLMs, each guided by product metadata and genuine reference reviews. Evaluations by GPT-4.1 confirm the high persuasion and deceptive potential of these reviews. To address this threat, we propose FraudSquad, a hybrid detection model that integrates text embeddings from a pre-trained language model with a gated graph transformer for spam node classification. FraudSquad captures both semantic and behavioral signals without relying on manual feature engineering or massive training resources. Experiments show that FraudSquad outperforms state-of-the-art baselines by up to 44.22% in precision and 43.01% in recall on three LLM-generated datasets, while also achieving promising results on two human-written spam datasets. Furthermore, FraudSquad maintains a modest model size and requires minimal labeled training data, making it a practical solution for real-world applications. Our contributions include new synthetic datasets, a practical detection framework, and empirical evidence highlighting the urgency of adapting spam detection to the LLM era. Our code and datasets are available at: https://anonymous.4open.science/r/FraudSquad-5389/.
A wealth of operational intelligence is locked within the unstructured free-text of wind turbine maintenance logs, a resource largely inaccessible to traditional quantitative reliability analysis. While machine learning has been applied to this data, existing approaches typically stop at classification, categorising text into predefined labels. This paper addresses the gap in leveraging modern large language models (LLMs) for more complex reasoning tasks. We introduce an exploratory framework that uses LLMs to move beyond classification and perform deep semantic analysis. We apply this framework to a large industrial dataset to execute four analytical workflows: failure mode identification, causal chain inference, comparative site analysis, and data quality auditing. The results demonstrate that LLMs can function as powerful "reliability co-pilots," moving beyond labelling to synthesise textual information and generate actionable, expert-level hypotheses. This work contributes a novel and reproducible methodology for using LLMs as a reasoning tool, offering a new pathway to enhance operational intelligence in the wind energy sector by unlocking insights previously obscured in unstructured data.
Multimodal large language models (MLLMs) hold promise for integrating diverse data modalities, but current medical adaptations such as LLaVA-Med often fail to fully exploit the synergy between color fundus photography (CFP) and optical coherence tomography (OCT), and offer limited interpretability of quantitative biomarkers. We introduce GROK, a grounded multimodal large language model that jointly processes CFP, OCT, and text to deliver clinician-grade diagnoses of ocular and systemic disease. GROK comprises three core modules: Knowledge-Guided Instruction Generation, CLIP-Style OCT-Biomarker Alignment, and Supervised Instruction Fine-Tuning, which together establish a quantitative-to-qualitative diagnostic chain of thought, mirroring real clinical reasoning when producing detailed lesion annotations. To evaluate our approach, we introduce the Grounded Ophthalmic Understanding benchmark, which covers six disease categories and three tasks: macro-level diagnostic classification, report generation quality, and fine-grained clinical assessment of the generated chain of thought. Experiments show that, with only LoRA (Low-Rank Adaptation) fine-tuning of a 7B-parameter Qwen2 backbone, GROK outperforms comparable 7B and 32B baselines on both report quality and fine-grained clinical metrics, and even exceeds OpenAI o3. Code and data are publicly available in the GROK repository.
Foundation models (FMs) are reshaping medical imaging, yet their application in echocardiography remains limited. While several echocardiography-specific FMs have recently been introduced, no standardized benchmark exists to evaluate them. Echocardiography poses unique challenges, including noisy acquisitions, high frame redundancy, and limited public datasets. Most existing solutions evaluate on private data, restricting comparability. To address this, we introduce CardioBench, a comprehensive benchmark for echocardiography FMs. CardioBench unifies eight publicly available datasets into a standardized suite spanning four regression and five classification tasks, covering functional, structural, diagnostic, and view recognition endpoints. We evaluate several leading FM, including cardiac-specific, biomedical, and general-purpose encoders, under consistent zero-shot, probing, and alignment protocols. Our results highlight complementary strengths across model families: temporal modeling is critical for functional regression, retrieval provides robustness under distribution shift, and domain-specific text encoders capture physiologically meaningful axes. General-purpose encoders transfer strongly and often close the gap with probing, but struggle with fine-grained distinctions like view classification and subtle pathology recognition. By releasing preprocessing, splits, and public evaluation pipelines, CardioBench establishes a reproducible reference point and offers actionable insights to guide the design of future echocardiography foundation models.
At the core of Deep Research is knowledge mining, the task of extracting structured information from massive unstructured text in response to user instructions. Large language models (LLMs) excel at interpreting such instructions but are prohibitively expensive to deploy at scale, while traditional pipelines of classifiers and extractors remain efficient yet brittle and unable to generalize to new tasks. We introduce Falconer, a collaborative framework that combines the agentic reasoning of LLMs with lightweight proxy models for scalable knowledge mining. In Falconer, LLMs act as planners, decomposing user instructions into executable pipelines, and as annotators, generating supervision to train small proxies. The framework unifies classification and extraction into two atomic operations, get label and get span, enabling a single instruction-following model to replace multiple task-specific components. To evaluate the consistency between proxy models incubated by Falconer and annotations provided by humans and large models, we construct new benchmarks covering both planning and end-to-end execution. Experiments show that Falconer closely matches state-of-the-art LLMs in instruction-following accuracy while reducing inference cost by up to 90% and accelerating large-scale knowledge mining by more than 20x, offering an efficient and scalable foundation for Deep Research.
Ensuring that every vehicle leaving a modern production line is built to the correct \emph{variant} specification and is free from visible defects is an increasingly complex challenge. We present the \textbf{Automated Vehicle Inspection (AVI)} platform, an end-to-end, \emph{multi-view} perception system that couples deep-learning detectors with a semantic rule engine to deliver \emph{variant-aware} quality control in real time. Eleven synchronized cameras capture a full 360{\deg} sweep of each vehicle; task-specific views are then routed to specialised modules: YOLOv8 for part detection, EfficientNet for ICE/EV classification, Gemini-1.5 Flash for mascot OCR, and YOLOv8-Seg for scratch-and-dent segmentation. A view-aware fusion layer standardises evidence, while a VIN-conditioned rule engine compares detected features against the expected manifest, producing an interpretable pass/fail report in \(\approx\! 300\,\text{ms}\). On a mixed data set of Original Equipment Manufacturer(OEM) vehicle data sets of four distinct models plus public scratch/dent images, AVI achieves \textbf{ 93 \%} verification accuracy, \textbf{86 \%} defect-detection recall, and sustains \(\mathbf{3.3}\) vehicles/min, surpassing single-view or no segmentation baselines by large margins. To our knowledge, this is the first publicly reported system that unifies multi-camera feature validation with defect detection in a deployable automotive setting in industry.
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.




Few-shot image classification remains challenging due to the limited availability of labeled examples. Recent approaches have explored generating synthetic training data using text-to-image diffusion models, but often require extensive model fine-tuning or external information sources. We present a novel training-free approach, called DIPSY, that leverages IP-Adapter for image-to-image translation to generate highly discriminative synthetic images using only the available few-shot examples. DIPSY introduces three key innovations: (1) an extended classifier-free guidance scheme that enables independent control over positive and negative image conditioning; (2) a class similarity-based sampling strategy that identifies effective contrastive examples; and (3) a simple yet effective pipeline that requires no model fine-tuning or external captioning and filtering. Experiments across ten benchmark datasets demonstrate that our approach achieves state-of-the-art or comparable performance, while eliminating the need for generative model adaptation or reliance on external tools for caption generation and image filtering. Our results highlight the effectiveness of leveraging dual image prompting with positive-negative guidance for generating class-discriminative features, particularly for fine-grained classification tasks.
The proliferation of disinformation, particularly in multimodal contexts combining text and images, presents a significant challenge across digital platforms. This study investigates the potential of large multimodal models (LMMs) in detecting and mitigating false information. We propose to approach multimodal disinformation detection by leveraging the advanced capabilities of the GPT-4o model. Our contributions include: (1) the development of an optimized prompt incorporating advanced prompt engineering techniques to ensure precise and consistent evaluations; (2) the implementation of a structured framework for multimodal analysis, including a preprocessing methodology for images and text to comply with the model's token limitations; (3) the definition of six specific evaluation criteria that enable a fine-grained classification of content, complemented by a self-assessment mechanism based on confidence levels; (4) a comprehensive performance analysis of the model across multiple heterogeneous datasets Gossipcop, Politifact, Fakeddit, MMFakeBench, and AMMEBA highlighting GPT-4o's strengths and limitations in disinformation detection; (5) an investigation of prediction variability through repeated testing, evaluating the stability and reliability of the model's classifications; and (6) the introduction of confidence-level and variability-based evaluation methods. These contributions provide a robust and reproducible methodological framework for automated multimodal disinformation analysis.
The rapid advancement of large language models (LLMs) has blurred the line between AI-generated and human-written text. This progress brings societal risks such as misinformation, authorship ambiguity, and intellectual property concerns, highlighting the urgent need for reliable AI-generated text detection methods. However, recent advances in generative language modeling have resulted in significant overlap between the feature distributions of human-written and AI-generated text, blurring classification boundaries and making accurate detection increasingly challenging. To address the above challenges, we propose a DNA-inspired perspective, leveraging a repair-based process to directly and interpretably capture the intrinsic differences between human-written and AI-generated text. Building on this perspective, we introduce DNA-DetectLLM, a zero-shot detection method for distinguishing AI-generated and human-written text. The method constructs an ideal AI-generated sequence for each input, iteratively repairs non-optimal tokens, and quantifies the cumulative repair effort as an interpretable detection signal. Empirical evaluations demonstrate that our method achieves state-of-the-art detection performance and exhibits strong robustness against various adversarial attacks and input lengths. Specifically, DNA-DetectLLM achieves relative improvements of 5.55% in AUROC and 2.08% in F1 score across multiple public benchmark datasets.