Abstract:While reinforcement learning with verifiable rewards (RLVR) has advanced LLM reasoning in structured domains like mathematics and programming, its application to general-domain reasoning tasks remains challenging due to the absence of verifiable reward signals. To this end, methods like Reinforcement Learning with Reference Probability Reward (RLPR) have emerged, leveraging the probability of generating the final answer as a reward signal. However, these outcome-focused approaches neglect crucial step-by-step supervision of the reasoning process itself. To address this gap, we introduce Probabilistic Process Supervision (P2S), a novel self-supervision framework that provides fine-grained process rewards without requiring a separate reward model or human-annotated reasoning steps. During reinforcement learning, P2S synthesizes and filters a high-quality reference reasoning chain (gold-CoT). The core of our method is to calculate a Path Faithfulness Reward (PFR) for each reasoning step, which is derived from the conditional probability of generating the gold-CoT's suffix, given the model's current reasoning prefix. Crucially, this PFR can be flexibly integrated with any outcome-based reward, directly tackling the reward sparsity problem by providing dense guidance. Extensive experiments on reading comprehension and medical Question Answering benchmarks show that P2S significantly outperforms strong baselines.
Abstract:Legal Article Prediction (LAP) is a critical task in legal text classification, leveraging natural language processing (NLP) techniques to automatically predict relevant legal articles based on the fact descriptions of cases. As a foundational step in legal decision-making, LAP plays a pivotal role in determining subsequent judgments, such as charges and penalties. Despite its importance, existing methods face significant challenges in addressing the complexities of LAP. Supervised classification models (SCMs), such as CNN and BERT, struggle to fully capture intricate fact patterns due to their inherent limitations. Conversely, large language models (LLMs), while excelling in generative tasks, perform suboptimally in predictive scenarios due to the abstract and ID-based nature of legal articles. Furthermore, the diversity of legal systems across jurisdictions exacerbates the issue, as most approaches are tailored to specific countries and lack broader applicability. To address these limitations, we propose Uni-LAP, a universal framework for legal article prediction that integrates the strengths of SCMs and LLMs through tight collaboration. Specifically, in Uni-LAP, the SCM is enhanced with a novel Top-K loss function to generate accurate candidate articles, while the LLM employs syllogism-inspired reasoning to refine the final predictions. We evaluated Uni-LAP on datasets from multiple jurisdictions, and empirical results demonstrate that our approach consistently outperforms existing baselines, showcasing its effectiveness and generalizability.