Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Oct 06, 2025
Abstract:Reasoning over very long inputs remains difficult for large language models (LLMs). Common workarounds either shrink the input via retrieval (risking missed evidence), enlarge the context window (straining selectivity), or stage multiple agents to read in pieces. In staged pipelines (e.g., Chain of Agents, CoA), free-form summaries passed between agents can discard crucial details and amplify early mistakes. We introduce COSMIR (Chain Orchestrated Structured Memory for Iterative Reasoning), a chain-style framework that replaces ad hoc messages with a structured memory. A Planner agent first turns a user query into concrete, checkable sub-questions. worker agents process chunks via a fixed micro-cycle: Extract, Infer, Refine, writing all updates to the shared memory. A Manager agent then Synthesizes the final answer directly from the memory. This preserves step-wise read-then-reason benefits while changing both the communication medium (structured memory) and the worker procedure (fixed micro-cycle), yielding higher faithfulness, better long-range aggregation, and auditability. On long-context QA from the HELMET suite, COSMIR reduces propagation-stage information loss and improves accuracy over a CoA baseline.
Via

Oct 05, 2025
Abstract:Sequential Visual Place Recognition (Seq-VPR) leverages transformers to capture spatio-temporal features effectively; however, existing approaches prioritize performance at the expense of flexibility and efficiency. In practice, a transformer-based Seq-VPR model should be flexible to the number of frames per sequence (seq-length), deliver fast inference, and have low memory usage to meet real-time constraints. To our knowledge, no existing transformer-based Seq-VPR method achieves both flexibility and efficiency. To address this gap, we propose Adapt-STformer, a Seq-VPR method built around our novel Recurrent Deformable Transformer Encoder (Recurrent-DTE), which uses an iterative recurrent mechanism to fuse information from multiple sequential frames. This design naturally supports variable seq-lengths, fast inference, and low memory usage. Experiments on the Nordland, Oxford, and NuScenes datasets show that Adapt-STformer boosts recall by up to 17% while reducing sequence extraction time by 36% and lowering memory usage by 35% compared to the second-best baseline.
* 8 pages, 6 figures
Via

Oct 06, 2025
Abstract:With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.
* Accepted as a regular paper at BIBM2025
Via

Oct 02, 2025
Abstract:The deployment of integrated sensing and communication (ISAC) brings along unprecedented vulnerabilities to authorized sensing, necessitating the development of secure solutions. Sensing parameters are embedded within the target-reflected signal leaked to unauthorized passive radar sensing eavesdroppers (Eve), implying that they can silently extract sensory information without prior knowledge of the information data. To overcome this limitation, we propose a sensing-secure ISAC framework that ensures secure target detection and estimation for the legitimate system, while obfuscating unauthorized sensing without requiring any prior knowledge of Eve. By introducing artificial imperfections into the ambiguity function (AF) of ISAC signals, we introduce artificial targets into Eve's range profile which increase its range estimation ambiguity. In contrast, the legitimate sensing receiver (Alice) can suppress these AF artifacts using mismatched filtering, albeit at the expense of signal-to-noise ratio (SNR) loss. Employing an OFDM signal, a structured subcarrier power allocation scheme is designed to shape the secure autocorrelation function (ACF), inserting periodic peaks to mislead Eve's range estimation and degrade target detection performance. To quantify the sensing security, we introduce peak sidelobe level (PSL) and integrated sidelobe level (ISL) as key performance metrics. Then, we analyze the three-way trade-offs between communication, legitimate sensing, and sensing security, highlighting the impact of the proposed sensing-secure ISAC signaling on system performance. We formulate a convex optimization problem to maximize ISAC performance while guaranteeing a certain sensing security level. Numerical results validate the effectiveness of the proposed sensing-secure ISAC signaling, demonstrating its ability to degrade Eve's target estimation while preserving Alice's performance.
* 15 pages, 12 figures, accepted to IEEE Transactions on Wireless
Communications
Via

Oct 01, 2025
Abstract:Data from online job postings are difficult to access and are not built in a standard or transparent manner. Data included in the standard taxonomy and occupational information database (O*NET) are updated infrequently and based on small survey samples. We adopt O*NET as a framework for building natural language processing tools that extract structured information from job postings. We publish the Job Ad Analysis Toolkit (JAAT), a collection of open-source tools built for this purpose, and demonstrate its reliability and accuracy in out-of-sample and LLM-as-a-Judge testing. We extract more than 10 billion data points from more than 155 million online job ads provided by the National Labor Exchange (NLx) Research Hub, including O*NET tasks, occupation codes, tools, and technologies, as well as wages, skills, industry, and more features. We describe the construction of a dataset of occupation, state, and industry level features aggregated by monthly active jobs from 2015 - 2025. We illustrate the potential for research and future uses in education and workforce development.
* 85 pages
Via

Oct 01, 2025
Abstract:At the core of Deep Research is knowledge mining, the task of extracting structured information from massive unstructured text in response to user instructions. Large language models (LLMs) excel at interpreting such instructions but are prohibitively expensive to deploy at scale, while traditional pipelines of classifiers and extractors remain efficient yet brittle and unable to generalize to new tasks. We introduce Falconer, a collaborative framework that combines the agentic reasoning of LLMs with lightweight proxy models for scalable knowledge mining. In Falconer, LLMs act as planners, decomposing user instructions into executable pipelines, and as annotators, generating supervision to train small proxies. The framework unifies classification and extraction into two atomic operations, get label and get span, enabling a single instruction-following model to replace multiple task-specific components. To evaluate the consistency between proxy models incubated by Falconer and annotations provided by humans and large models, we construct new benchmarks covering both planning and end-to-end execution. Experiments show that Falconer closely matches state-of-the-art LLMs in instruction-following accuracy while reducing inference cost by up to 90% and accelerating large-scale knowledge mining by more than 20x, offering an efficient and scalable foundation for Deep Research.
Via

Oct 02, 2025
Abstract:This paper studies the problem of extracting common randomness (CR) or secret keys from correlated random sources observed by two legitimate parties, Alice and Bob, through public discussion in the presence of an eavesdropper, Eve. We propose a practical two-stage CR extraction framework. In the first stage, the variational probabilistic quantization (VPQ) step is introduced, where Alice and Bob employ probabilistic neural network (NN) encoders to map their observations into discrete, nearly uniform random variables (RVs) with high agreement probability while minimizing information leakage to Eve. This is realized through a variational learning objective combined with adversarial training. In the second stage, a secure sketch using code-offset construction reconciles the encoder outputs into identical secret keys, whose secrecy is guaranteed by the VPQ objective. As a representative application, we study physical layer key (PLK) generation. Beyond the traditional methods, which rely on the channel reciprocity principle and require two-way channel probing, thus suffering from large protocol overhead and being unsuitable in high mobility scenarios, we propose a sensing-based PLK generation method for integrated sensing and communications (ISAC) systems, where paired range-angle (RA) maps measured at Alice and Bob serve as correlated sources. The idea is verified through both end-to-end simulations and real-world software-defined radio (SDR) measurements, including scenarios where Eve has partial knowledge about Bob's position. The results demonstrate the feasibility and convincing performance of both the proposed CR extraction framework and sensing-based PLK generation method.
Via

Sep 26, 2025
Abstract:Hydrogen is the most abundant element in our Universe. The first generation of stars and galaxies produced photons that ionized hydrogen gas, driving a cosmological event known as the Epoch of Reionization (EoR). The upcoming Square Kilometre Array Observatory (SKAO) will map the distribution of neutral hydrogen during this era, aiding in the study of the properties of these first-generation objects. Extracting astrophysical information will be challenging, as SKAO will produce a tremendous amount of data where the hydrogen signal will be contaminated with undesired foreground contamination and instrumental systematics. To address this, we develop the latest deep learning techniques to extract information from the 2D power spectra of the hydrogen signal expected from SKAO. We apply a series of neural network models to these measurements and quantify their ability to predict the history of cosmic hydrogen reionization, which is connected to the increasing number and efficiency of early photon sources. We show that the study of the early Universe benefits from modern deep learning technology. In particular, we demonstrate that dedicated machine learning algorithms can achieve more than a $0.95$ $R^2$ score on average in recovering the reionization history. This enables accurate and precise cosmological and astrophysical inference of structure formation in the early Universe.
* Valente de Oliveira, J., Leite, J., Rodrigues, J., Dias, J.,
Cardoso, P. (eds) Progress in Artificial Intelligence. EPIA 2025. Lecture
Notes in Computer Science(), vol 16121. Springer, Cham
* EPIA 2025 preprint version, 12 pages, 3 figures
Via

Oct 01, 2025
Abstract:Event cameras offer advantages in object detection tasks due to high-speed response, low latency, and robustness to motion blur. However, event cameras lack texture and color information, making open-vocabulary detection particularly challenging. Current event-based detection methods are typically trained on predefined categories, limiting their ability to generalize to novel objects, where encountering previously unseen objects is common. Vision-language models (VLMs) have enabled open-vocabulary object detection in RGB images. However, the modality gap between images and event streams makes it ineffective to directly transfer CLIP to event data, as CLIP was not designed for event streams. To bridge this gap, we propose an event-image knowledge distillation framework that leverages CLIP's semantic understanding to achieve open-vocabulary object detection on event data. Instead of training CLIP directly on event streams, we use image frames as inputs to a teacher model, guiding the event-based student model to learn CLIP's rich visual representations. Through spatial attention-based distillation, the student network learns meaningful visual features directly from raw event inputs while inheriting CLIP's broad visual knowledge. Furthermore, to prevent information loss due to event data segmentation, we design a hybrid spiking neural network (SNN) and convolutional neural network (CNN) framework. Unlike fixed-group event segmentation methods, which often discard crucial temporal information, our SNN adaptively determines the optimal event segmentation moments, ensuring that key temporal features are extracted. The extracted event features are then processed by CNNs for object detection.
Via

Oct 02, 2025
Abstract:Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.
* Accepted by NeurIPS 2025
Via
