Information extraction is the process of automatically extracting structured information from unstructured text data.
Unstructured documents like PDFs contain valuable structured information, but downstream systems require this data in reliable, standardized formats. LLMs are increasingly deployed to automate this extraction, making accuracy and reliability paramount. However, progress is bottlenecked by two gaps. First, no end-to-end benchmark evaluates PDF-to-JSON extraction under enterprise-scale schema breadth. Second, no principled methodology captures the semantics of nested extraction, where fields demand different notions of correctness (exact match for identifiers, tolerance for quantities, semantic equivalence for names), arrays require alignment, and omission must be distinguished from hallucination. We address both gaps with ExtractBench, an open-source benchmark and evaluation framework for PDF-to-JSON structured extraction. The benchmark pairs 35 PDF documents with JSON Schemas and human-annotated gold labels across economically valuable domains, yielding 12,867 evaluatable fields spanning schema complexities from tens to hundreds of fields. The evaluation framework treats the schema as an executable specification: each field declares its scoring metric. Baseline evaluations reveal that frontier models (GPT-5/5.2, Gemini-3 Flash/Pro, Claude 4.5 Opus/Sonnet) remain unreliable on realistic schemas. Performance degrades sharply with schema breadth, culminating in 0% valid output on a 369-field financial reporting schema across all tested models. We release ExtractBench at https://github.com/ContextualAI/extract-bench.
Time series forecasting has long been dominated by model-centric approaches that formulate prediction as a single-pass mapping from historical observations to future values. Despite recent progress, such formulations often struggle in complex and evolving settings, largely because most forecasting models lack the ability to autonomously acquire informative evidence, reason about potential future changes, or revise predictions through iterative decision processes. In this work, we propose Cast-R1, a learned time series forecasting framework that reformulates forecasting as a sequential decision-making problem. Cast-R1 introduces a memory-based state management mechanism that maintains decision-relevant information across interaction steps, enabling the accumulation of contextual evidence to support long-horizon reasoning. Building on this formulation, forecasting is carried out through a tool-augmented agentic workflow, in which the agent autonomously interacts with a modular toolkit to extract statistical features, invoke lightweight forecasting models for decision support, perform reasoning-based prediction, and iteratively refine forecasts through self-reflection. To train Cast-R1, we adopt a two-stage learning strategy that combines supervised fine-tuning with multi-turn reinforcement learning, together with a curriculum learning scheme that progressively increases task difficulty to improve policy learning. Extensive experiments on multiple real-world time series datasets demonstrate the effectiveness of Cast-R1. We hope this work provides a practical step towards further exploration of agentic paradigms for time series modeling. Our code is available at https://github.com/Xiaoyu-Tao/Cast-R1-TS.
Large Language Models (LLMs) are a powerful tool for statistical text analysis, with derived sequences of next-token probability distributions offering a wealth of information. Extracting this signal typically relies on metrics such as perplexity, which do not adequately account for context; how one should interpret a given next-token probability is dependent on the number of reasonable choices encoded by the shape of the conditional distribution. In this work, we present DMAP, a mathematically grounded method that maps a text, via a language model, to a set of samples in the unit interval that jointly encode rank and probability information. This representation enables efficient, model-agnostic analysis and supports a range of applications. We illustrate its utility through three case studies: (i) validation of generation parameters to ensure data integrity, (ii) examining the role of probability curvature in machine-generated text detection, and (iii) a forensic analysis revealing statistical fingerprints left in downstream models that have been subject to post-training on synthetic data. Our results demonstrate that DMAP offers a unified statistical view of text that is simple to compute on consumer hardware, widely applicable, and provides a foundation for further research into text analysis with LLMs.
Misinformation detection is a critical task that can benefit significantly from the integration of external knowledge, much like manual fact-checking. In this work, we propose a novel method for representing textual documents that facilitates the incorporation of information from a knowledge base. Our approach, Text Encoding with Graph (TEG), processes documents by extracting structured information in the form of a graph and encoding both the text and the graph for classification purposes. Through extensive experiments, we demonstrate that this hybrid representation enhances misinformation detection performance compared to using language models alone. Furthermore, we introduce TEGRA, an extension of our framework that integrates domain-specific knowledge, further enhancing classification accuracy in most cases.
Despite the advanced capabilities of Large Vision-Language Models (LVLMs), they frequently suffer from object hallucination. One reason is that visual features and pretrained textual representations often become intertwined in the deeper network layers. To address this, we propose REVIS, a training-free framework designed to explicitly re-activate this suppressed visual information. Rooted in latent space geometry, REVIS extracts the pure visual information vector via orthogonal projection and employs a calibrated strategy to perform sparse intervention only at the precise depth where suppression occurs. This surgical approach effectively restores visual information with minimal computational cost. Empirical evaluations on standard benchmarks demonstrate that REVIS reduces object hallucination rates by approximately 19% compared to state-of-the-art baselines, while preserving general reasoning capabilities.
Model checking in TLA+ provides strong correctness guarantees, yet practitioners continue to face significant challenges in interpreting counterexamples, understanding large state-transition graphs, and repairing faulty models. These difficulties stem from the limited explainability of raw model-checker output and the substantial manual effort required to trace violations back to source specifications. Although the TLA+ Toolbox includes a state diagram viewer, it offers only a static, fully expanded graph without folding, color highlighting, or semantic explanations, which limits its scalability and interpretability. We present ModelWisdom, an interactive environment that uses visualization and large language models to make TLA+ model checking more interpretable and actionable. ModelWisdom offers: (i) Model Visualization, with colorized violation highlighting, click-through links from transitions to TLA+ code, and mapping between violating states and broken properties; (ii) Graph Optimization, including tree-based structuring and node/edge folding to manage large models; (iii) Model Digest, which summarizes and explains subgraphs via large language models (LLMs) and performs preprocessing and partial explanations; and (iv) Model Repair, which extracts error information and supports iterative debugging. Together, these capabilities turn raw model-checker output into an interactive, explainable workflow, improving understanding and reducing debugging effort for nontrivial TLA+ specifications. The website to ModelWisdom is available: https://model-wisdom.pages.dev. A demonstrative video can be found at https://www.youtube.com/watch?v=plyZo30VShA.
Modern online experimentation faces two bottlenecks: scarce traffic forces tough choices on which variants to test, and post-hoc insight extraction is manual, inconsistent, and often content-agnostic. Meanwhile, organizations underuse historical A/B results and rich content embeddings that could guide prioritization and creative iteration. We present a unified framework to (i) prioritize which variants to test, (ii) explain why winners win, and (iii) surface targeted opportunities for new, higher-potential variants. Leveraging treatment embeddings and historical outcomes, we train a CTR ranking model with fixed effects for contextual shifts that scores candidates while balancing value and content diversity. For better interpretability and understanding, we project treatments onto curated semantic marketing attributes and re-express the ranker in this space via a sign-consistent, sparse constrained Lasso, yielding per-attribute coefficients and signed contributions for visual explanations, top-k drivers, and natural-language insights. We then compute an opportunity index combining attribute importance (from the ranker) with under-expression in the current experiment to flag missing, high-impact attributes. Finally, LLMs translate ranked opportunities into concrete creative suggestions and estimate both learning and conversion potential, enabling faster, more informative, and more efficient test cycles. These components have been built into a real Adobe product, called \textit{Experimentation Accelerator}, to provide AI-based insights and opportunities to scale experimentation for customers. We provide an evaluation of the performance of the proposed framework on some real-world experiments by Adobe business customers that validate the high quality of the generation pipeline.
Mobile robots are often deployed over long durations in diverse open, dynamic scenes, including indoor setting such as warehouses and manufacturing facilities, and outdoor settings such as agricultural and roadway operations. A core challenge is to build a scalable long-horizon memory that supports an agentic workflow for planning, retrieval, and reasoning over open-ended instructions at variable granularity, while producing precise, actionable answers for navigation. We present STaR, an agentic reasoning framework that (i) constructs a task-agnostic, multimodal long-term memory that generalizes to unseen queries while preserving fine-grained environmental semantics (object attributes, spatial relations, and dynamic events), and (ii) introduces a Scalable Task Conditioned Retrieval algorithm based on the Information Bottleneck principle to extract from long-term memory a compact, non-redundant, information-rich set of candidate memories for contextual reasoning. We evaluate STaR on NaVQA (mixed indoor/outdoor campus scenes) and WH-VQA, a customized warehouse benchmark with many visually similar objects built with Isaac Sim, emphasizing contextual reasoning. Across the two datasets, STaR consistently outperforms strong baselines, achieving higher success rates and markedly lower spatial error. We further deploy STaR on a real Husky wheeled robot in both indoor and outdoor environments, demonstrating robust long horizon reasoning, scalability, and practical utility. Project Website: https://trailab.github.io/STaR-website/
Non-line-of-sight sensing of human activities in complex environments is enabled by multiple-input multiple-output through-the-wall radar (TWR). However, the distinctiveness of micro-Doppler signature between similar indoor human activities such as gun carrying and normal walking is minimal, while the large scale of input images required for effective identification utilizing time-frequency spectrograms creates challenges for model training and inference efficiency. To address this issue, the Chebyshev-time map is proposed in this paper, which is a method characterizing micro-Doppler signature using polynomial orders. The parametric kinematic models for human motion and the TWR echo model are first established. Then, a time-frequency feature representation method based on orthogonal Chebyshev polynomial decomposition is proposed. The kinematic envelopes of the torso and limbs are extracted, and the time-frequency spectrum slices are mapped into a robust Chebyshev-time coefficient space, preserving the multi-order morphological detail information of time-frequency spectrum. Numerical simulations and experiments are conducted to verify the effectiveness of the proposed method, which demonstrates the capability to characterize armed and unarmed indoor human activities while effectively compressing the scale of the time-frequency spectrum to achieve a balance between recognition accuracy and input data dimensions. The open-source code of this paper can be found in: https://github.com/JoeyBGOfficial/Represent-Micro-Doppler-Signature-in-Orders.
Competency modeling is widely used in human resource management to select, develop, and evaluate talent. However, traditional expert-driven approaches rely heavily on manual analysis of large volumes of interview transcripts, making them costly and prone to randomness, ambiguity, and limited reproducibility. This study proposes a new competency modeling process built on large language models (LLMs). Instead of merely automating isolated steps, we reconstruct the workflow by decomposing expert practices into structured computational components. Specifically, we leverage LLMs to extract behavioral and psychological descriptions from raw textual data and map them to predefined competency libraries through embedding-based similarity. We further introduce a learnable parameter that adaptively integrates different information sources, enabling the model to determine the relative importance of behavioral and psychological signals. To address the long-standing challenge of validation, we develop an offline evaluation procedure that allows systematic model selection without requiring additional large-scale data collection. Empirical results from a real-world implementation in a software outsourcing company demonstrate strong predictive validity, cross-library consistency, and structural robustness. Overall, our framework transforms competency modeling from a largely qualitative and expert-dependent practice into a transparent, data-driven, and evaluable analytical process.