Information extraction is the process of automatically extracting structured information from unstructured text data.
Municipal meeting minutes record key decisions in local democratic processes. Unlike parliamentary proceedings, which typically adhere to standardized formats, they encode voting outcomes in highly heterogeneous, free-form narrative text that varies widely across municipalities, posing significant challenges for automated extraction. In this paper, we introduce VotIE (Voting Information Extraction), a new information extraction task aimed at identifying structured voting events in narrative deliberative records, and establish the first benchmark for this task using Portuguese municipal minutes, building on the recently introduced CitiLink corpus. Our experiments yield two key findings. First, under standard in-domain evaluation, fine-tuned encoders, specifically XLM-R-CRF, achieve the strongest performance, reaching 93.2\% macro F1, outperforming generative approaches. Second, in a cross-municipality setting that evaluates transfer to unseen administrative contexts, these models suffer substantial performance degradation, whereas few-shot LLMs demonstrate greater robustness, with significantly smaller declines in performance. Despite this generalization advantage, the high computational cost of generative models currently constrains their practicality. As a result, lightweight fine-tuned encoders remain a more practical option for large-scale, real-world deployment. To support reproducible research in administrative NLP, we publicly release our benchmark, trained models, and evaluation framework.
Charts are high-density visual carriers of complex data and medium for information extraction and analysis. Due to the need for precise and complex visual reasoning, automated chart understanding poses a significant challenge to existing Multimodal Large Language Models (MLLMs). Many MLLMs trained with reinforcement learning (RL) face the challenge of credit assignment. Their advantage estimation, typically performed at the trajectory level, cannot distinguish between correct and incorrect reasoning steps within a single generated response. To address this limitation, we introduce SketchVL, a novel MLLM that optimized with FinePO, a new RL algorithm designed for fine-grained credit assignment within each trajectory. SketchVL's methodology involves drawing its intermediate reasoning steps as markers on the image and feeding the annotated image back to itself, creating a robust, multi-step reasoning process. During training, the FinePO algorithm leverages a Fine-grained Process Reward Model (FinePRM) to score each drawing action within a trajectory, thereby precisely assigning credit for each step. This mechanism allows FinePO to more strongly reward correct tokens when a trajectory is globally successful, and more heavily penalize incorrect tokens when the trajectory is globally suboptimal, thus achieving fine-grained reinforcement signals. Experiments show that SketchVL learns to align its step-level behavior with the FinePRM, achieving an average performance gain of 7.23\% over its base model across chart datasets, natural image datasets, and mathematics, providing a promising new direction for training powerful reasoning models.
We present AutoTour, a system that enhances user exploration by automatically generating fine-grained landmark annotations and descriptive narratives for photos captured by users. The key idea of AutoTour is to fuse visual features extracted from photos with nearby geospatial features queried from open matching databases. Unlike existing tour applications that rely on pre-defined content or proprietary datasets, AutoTour leverages open and extensible data sources to provide scalable and context-aware photo-based guidance. To achieve this, we design a training-free pipeline that first extracts and filters relevant geospatial features around the user's GPS location. It then detects major landmarks in user photos through VLM-based feature detection and projects them into the horizontal spatial plane. A geometric matching algorithm aligns photo features with corresponding geospatial entities based on their estimated distance and direction. The matched features are subsequently grounded and annotated directly on the original photo, accompanied by large language model-generated textual and audio descriptions to provide an informative, tour-like experience. We demonstrate that AutoTour can deliver rich, interpretable annotations for both iconic and lesser-known landmarks, enabling a new form of interactive, context-aware exploration that bridges visual perception and geospatial understanding.
Ground-penetrating radar (GPR) combines depth resolution, non-destructive operation, and broad material sensitivity, yet it has seen limited use in diagnosing building envelopes. The compact geometry of wall assemblies, where reflections from closely spaced studs, sheathing, and cladding strongly overlap, has made systematic inversion difficult. Recent advances in data-driven interpretation provide an opportunity to revisit this challenge and assess whether machine learning can reliably extract structural information from such complex signals. Here, we develop a GPR-based inversion framework that decomposes wall diagnostics into classification tasks addressing vertical (stud presence) and lateral (wall-type) variations. Alongside model development, we implement multiple feature minimization strategies - including recursive elimination, agglomerative clustering, and L0-based sparsity - to promote fidelity and interpretability. Among these approaches, the L0-based sparse neural network (SparseNN) emerges as particularly effective: it exceeds Random Forest accuracy while relying on only a fraction of the input features, each linked to identifiable dielectric interfaces. SHAP analysis further confirms that the SparseNN learns reflection patterns consistent with physical layer boundaries. In summary, this framework establishes a foundation for physically interpretable and data-efficient inversion of wall assemblies using GPR radargrams. Although defect detection is not addressed here, the ability to reconstruct intact envelope structure and isolate features tied to key elements provides a necessary baseline for future inversion and anomaly-analysis tasks.
Entity linking (mapping ambiguous mentions in text to entities in a knowledge base) is a foundational step in tasks such as knowledge graph construction, question-answering, and information extraction. Our method, LELA, is a modular coarse-to-fine approach that leverages the capabilities of large language models (LLMs), and works with different target domains, knowledge bases and LLMs, without any fine-tuning phase. Our experiments across various entity linking settings show that LELA is highly competitive with fine-tuned approaches, and substantially outperforms the non-fine-tuned ones.
Current Retrieval-Augmented Generation (RAG) systems typically employ a traditional two-stage pipeline: an embedding model for initial retrieval followed by a reranker for refinement. However, this paradigm suffers from significant inefficiency due to the lack of shared information between stages, leading to substantial redundant computation. To address this limitation, we propose \textbf{State-Centric Retrieval}, a unified retrieval paradigm that utilizes "states" as a bridge to connect embedding models and rerankers. First, we perform state representation learning by fine-tuning an RWKV-based LLM, transforming it into \textbf{EmbeddingRWKV}, a unified model that serves as both an embedding model and a state backbone for extracting compact, reusable states. Building upon these reusable states, we further design a state-based reranker to fully leverage precomputed information. During reranking, the model processes only query tokens, decoupling inference cost from document length and yielding a 5.4$\times$--44.8$\times$ speedup. Furthermore, we observe that retaining all intermediate layer states is unnecessary; with a uniform layer selection strategy, our model maintains 98.62\% of full-model performance using only 25\% of the layers. Extensive experiments demonstrate that State-Centric Retrieval achieves high-quality retrieval and reranking results while significantly enhancing overall system efficiency. Code is available at \href{https://github.com/howard-hou/EmbeddingRWKV}{our GitHub repository}.
The Automatic Identification System provides critical information for maritime navigation and safety, yet its trajectories are often incomplete due to signal loss or deliberate tampering. Existing imputation methods emphasize trajectory recovery, paying limited attention to interpretability and failing to provide underlying knowledge that benefits downstream tasks such as anomaly detection and route planning. We propose knowledge-driven interpretable vessel trajectory imputation (VISTA), the first trajectory imputation framework that offers interpretability while simultaneously providing underlying knowledge to support downstream analysis. Specifically, we first define underlying knowledge as a combination of Structured Data-derived Knowledge (SDK) distilled from AIS data and Implicit LLM Knowledge acquired from large-scale Internet corpora. Second, to manage and leverage the SDK effectively at scale, we develop a data-knowledge-data loop that employs a Structured Data-derived Knowledge Graph for SDK extraction and knowledge-driven trajectory imputation. Third, to efficiently process large-scale AIS data, we introduce a workflow management layer that coordinates the end-to-end pipeline, enabling parallel knowledge extraction and trajectory imputation with anomaly handling and redundancy elimination. Experiments on two large AIS datasets show that VISTA is capable of state-of-the-art imputation accuracy and computational efficiency, improving over state-of-the-art baselines by 5%-94% and reducing time cost by 51%-93%, while producing interpretable knowledge cues that benefit downstream tasks. The source code and implementation details of VISTA are publicly available.
Privacy-preserving Transformer inference has gained attention due to the potential leakage of private information. Despite recent progress, existing frameworks still fall short of practical model scales, with gaps up to a hundredfold. A possible way to close this gap is the Mixture of Experts (MoE) architecture, which has emerged as a promising technique to scale up model capacity with minimal overhead. However, given that the current secure two-party (2-PC) protocols allow the server to homomorphically compute the FFN layer with its plaintext model weight, under the MoE setting, this could reveal which expert is activated to the server, exposing token-level privacy about the client's input. While naively evaluating all the experts before selection could protect privacy, it nullifies MoE sparsity and incurs the heavy computational overhead that sparse MoE seeks to avoid. To address the privacy and efficiency limitations above, we propose a 2-PC privacy-preserving inference framework, \SecMoE. Unifying per-entry circuits in both the MoE layer and piecewise polynomial functions, \SecMoE obliviously selects the extracted parameters from circuits and only computes one encrypted entry, which we refer to as Select-Then-Compute. This makes the model for private inference scale to 63$\times$ larger while only having a 15.2$\times$ increase in end-to-end runtime. Extensive experiments show that, under 5 expert settings, \SecMoE lowers the end-to-end private inference communication by 1.8$\sim$7.1$\times$ and achieves 1.3$\sim$3.8$\times$ speedup compared to the state-of-the-art (SOTA) protocols.
Large Multimodal Models (LMMs) for video-audio understanding have traditionally been evaluated only on shorter videos of a few minutes long. In this paper, we introduce QMAVIS (Q Team-Multimodal Audio Video Intelligent Sensemaking), a novel long video-audio understanding pipeline built through a late fusion of LMMs, Large Language Models, and speech recognition models. QMAVIS addresses the gap in long-form video analytics, particularly for longer videos of a few minutes to beyond an hour long, opening up new potential applications in sensemaking, video content analysis, embodied AI, etc. Quantitative experiments using QMAVIS demonstrated a 38.75% improvement over state-of-the-art video-audio LMMs like VideoLlaMA2 and InternVL2 on the VideoMME (with subtitles) dataset, which comprises long videos with audio information. Evaluations on other challenging video understanding datasets like PerceptionTest and EgoSchema saw up to 2% improvement, indicating competitive performance. Qualitative experiments also showed that QMAVIS is able to extract the nuances of different scenes in a long video audio content while understanding the overarching narrative. Ablation studies were also conducted to ascertain the impact of each component in the fusion pipeline.
Vision Language Models (VLMs) are increasingly integrated into privacy-critical domains, yet existing evaluations of personally identifiable information (PII) leakage largely treat privacy as a static extraction task and ignore how a subject's online presence--the volume of their data available online--influences privacy alignment. We introduce PII-VisBench, a novel benchmark containing 4000 unique probes designed to evaluate VLM safety through the continuum of online presence. The benchmark stratifies 200 subjects into four visibility categories: high, medium, low, and zero--based on the extent and nature of their information available online. We evaluate 18 open-source VLMs (0.3B-32B) based on two key metrics: percentage of PII probing queries refused (Refusal Rate) and the fraction of non-refusal responses flagged for containing PII (Conditional PII Disclosure Rate). Across models, we observe a consistent pattern: refusals increase and PII disclosures decrease (9.10% high to 5.34% low) as subject visibility drops. We identify that models are more likely to disclose PII for high-visibility subjects, alongside substantial model-family heterogeneity and PII-type disparities. Finally, paraphrasing and jailbreak-style prompts expose attack and model-dependent failures, motivating visibility-aware safety evaluation and training interventions.