Information extraction is the process of automatically extracting structured information from unstructured text data.
Audio-visual video highlight detection aims to automatically identify the most salient moments in videos by leveraging both visual and auditory cues. However, existing models often underutilize the audio modality, focusing on high-level semantic features while failing to fully leverage the rich, dynamic characteristics of sound. To address this limitation, we propose a novel framework, Dual-Pathway Audio Encoders for Video Highlight Detection (DAViHD). The dual-pathway audio encoder is composed of a semantic pathway for content understanding and a dynamic pathway that captures spectro-temporal dynamics. The semantic pathway extracts high-level information by identifying the content within the audio, such as speech, music, or specific sound events. The dynamic pathway employs a frequency-adaptive mechanism as time evolves to jointly model these dynamics, enabling it to identify transient acoustic events via salient spectral bands and rapid energy changes. We integrate the novel audio encoder into a full audio-visual framework and achieve new state-of-the-art performance on the large-scale MrHiSum benchmark. Our results demonstrate that a sophisticated, dual-faceted audio representation is key to advancing the field of highlight detection.
Document parsing has garnered widespread attention as vision-language models (VLMs) advance OCR capabilities. However, the field remains fragmented across dozens of specialized models with varying strengths, forcing users to navigate complex model selection and limiting system scalability. Moreover, existing two-stage approaches depend on axis-aligned bounding boxes for layout detection, failing to handle distorted or photographed documents effectively. To this end, we present Dolphin-v2, a two-stage document image parsing model that substantially improves upon the original Dolphin. In the first stage, Dolphin-v2 jointly performs document type classification (digital-born versus photographed) alongside layout analysis. For digital-born documents, it conducts finer-grained element detection with reading order prediction. In the second stage, we employ a hybrid parsing strategy: photographed documents are parsed holistically as complete pages to handle geometric distortions, while digital-born documents undergo element-wise parallel parsing guided by the detected layout anchors, enabling efficient content extraction. Compared with the original Dolphin, Dolphin-v2 introduces several crucial enhancements: (1) robust parsing of photographed documents via holistic page-level understanding, (2) finer-grained element detection (21 categories) with semantic attribute extraction such as author information and document metadata, and (3) code block recognition with indentation preservation, which existing systems typically lack. Comprehensive evaluations are conducted on DocPTBench, OmniDocBench, and our self-constructed RealDoc-160 benchmark. The results demonstrate substantial improvements: +14.78 points overall on the challenging OmniDocBench and 91% error reduction on photographed documents, while maintaining efficient inference through parallel processing.
Key Information Extraction (KIE) from real-world documents remains challenging due to substantial variations in layout structures, visual quality, and task-specific information requirements. Recent Large Multimodal Models (LMMs) have shown promising potential for performing end-to-end KIE directly from document images. To enable a comprehensive and systematic evaluation across realistic and diverse application scenarios, we introduce UNIKIE-BENCH, a unified benchmark designed to rigorously evaluate the KIE capabilities of LMMs. UNIKIE-BENCH consists of two complementary tracks: a constrained-category KIE track with scenario-predefined schemas that reflect practical application needs, and an open-category KIE track that extracts any key information that is explicitly present in the document. Experiments on 15 state-of-the-art LMMs reveal substantial performance degradation under diverse schema definitions, long-tail key fields, and complex layouts, along with pronounced performance disparities across different document types and scenarios. These findings underscore persistent challenges in grounding accuracy and layout-aware reasoning for LMM-based KIE. All codes and datasets are available at https://github.com/NEUIR/UNIKIE-BENCH.
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
Multivariate time series forecasting in graph-structured domains is critical for real-world applications, yet existing spatiotemporal models often suffer from performance degradation under data scarcity and cross-domain shifts. We address these challenges through the lens of structure-aware context selection. We propose TL-GPSTGN, a transfer-oriented spatiotemporal framework that enhances sample efficiency and out-of-distribution generalization by selectively pruning non-optimized graph context. Specifically, our method employs information-theoretic and correlation-based criteria to extract structurally informative subgraphs and features, resulting in a compact, semantically grounded representation. This optimized context is subsequently integrated into a spatiotemporal convolutional architecture to capture complex multivariate dynamics. Evaluations on large-scale traffic benchmarks demonstrate that TL-GPSTGN consistently outperforms baselines in low-data transfer scenarios. Our findings suggest that explicit context pruning serves as a powerful inductive bias for improving the robustness of graph-based forecasting models.
In the evolving field of robotics, the challenge of Object Navigation (ON) in household environments has attracted significant interest. Existing ON benchmarks typically place objects in locations guided by general scene priors, without accounting for the specific placement habits of individual users. This omission limits the adaptability of navigation agents in personalized household environments. To address this, we introduce User-centric Object Navigation (UcON), a new benchmark that incorporates user-specific object placement habits, referred to as user habits. This benchmark requires agents to leverage these user habits for more informed decision-making during navigation. UcON encompasses approximately 22,600 user habits across 489 object categories. UcON is, to our knowledge, the first benchmark that explicitly formalizes and evaluates habit-conditioned object navigation at scale and covers the widest range of target object categories. Additionally, we propose a habit retrieval module to extract and utilize habits related to target objects, enabling agents to infer their likely locations more effectively. Experimental results demonstrate that current SOTA methods exhibit substantial performance degradation under habit-driven object placement, while integrating user habits consistently improves success rates. Code is available at https://github.com/whcpumpkin/User-Centric-Object-Navigation.
Emotion recognition in speech presents a complex multimodal challenge, requiring comprehension of both linguistic content and vocal expressivity, particularly prosodic features such as fundamental frequency, intensity, and temporal dynamics. Although large language models (LLMs) have shown promise in reasoning over textual transcriptions for emotion recognition, they typically neglect fine-grained prosodic information, limiting their effectiveness and interpretability. In this work, we propose VowelPrompt, a linguistically grounded framework that augments LLM-based emotion recognition with interpretable, fine-grained vowel-level prosodic cues. Drawing on phonetic evidence that vowels serve as primary carriers of affective prosody, VowelPrompt extracts pitch-, energy-, and duration-based descriptors from time-aligned vowel segments, and converts these features into natural language descriptions for better interpretability. Such a design enables LLMs to jointly reason over lexical semantics and fine-grained prosodic variation. Moreover, we adopt a two-stage adaptation procedure comprising supervised fine-tuning (SFT) followed by Reinforcement Learning with Verifiable Reward (RLVR), implemented via Group Relative Policy Optimization (GRPO), to enhance reasoning capability, enforce structured output adherence, and improve generalization across domains and speaker variations. Extensive evaluations across diverse benchmark datasets demonstrate that VowelPrompt consistently outperforms state-of-the-art emotion recognition methods under zero-shot, fine-tuned, cross-domain, and cross-linguistic conditions, while enabling the generation of interpretable explanations that are jointly grounded in contextual semantics and fine-grained prosodic structure.
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
Multimodal machine learning, mimicking the human brain's ability to integrate various modalities has seen rapid growth. Most previous multimodal models are trained on perfectly paired multimodal input to reach optimal performance. In real-world deployments, however, the presence of modality is highly variable and unpredictable, causing the pre-trained models in suffering significant performance drops and fail to remain robust with dynamic missing modalities circumstances. In this paper, we present a novel Cyclic INformative Learning framework (CyIN) to bridge the gap between complete and incomplete multimodal learning. Specifically, we firstly build an informative latent space by adopting token- and label-level Information Bottleneck (IB) cyclically among various modalities. Capturing task-related features with variational approximation, the informative bottleneck latents are purified for more efficient cross-modal interaction and multimodal fusion. Moreover, to supplement the missing information caused by incomplete multimodal input, we propose cross-modal cyclic translation by reconstruct the missing modalities with the remained ones through forward and reverse propagation process. With the help of the extracted and reconstructed informative latents, CyIN succeeds in jointly optimizing complete and incomplete multimodal learning in one unified model. Extensive experiments on 4 multimodal datasets demonstrate the superior performance of our method in both complete and diverse incomplete scenarios.
Machine unlearning for LLMs aims to remove sensitive or copyrighted data from trained models. However, the true efficacy of current unlearning methods remains uncertain. Standard evaluation metrics rely on benign queries that often mistake superficial information suppression for genuine knowledge removal. Such metrics fail to detect residual knowledge that more sophisticated prompting strategies could still extract. We introduce REBEL, an evolutionary approach for adversarial prompt generation designed to probe whether unlearned data can still be recovered. Our experiments demonstrate that REBEL successfully elicits ``forgotten'' knowledge from models that seemed to be forgotten in standard unlearning benchmarks, revealing that current unlearning methods may provide only a superficial layer of protection. We validate our framework on subsets of the TOFU and WMDP benchmarks, evaluating performance across a diverse suite of unlearning algorithms. Our experiments show that REBEL consistently outperforms static baselines, recovering ``forgotten'' knowledge with Attack Success Rates (ASRs) reaching up to 60% on TOFU and 93% on WMDP. We will make all code publicly available upon acceptance. Code is available at https://github.com/patryk-rybak/REBEL/