Abstract:Human Activity Recognition (HAR) via Wi-Fi Channel State Information (CSI) presents a privacy-preserving, contactless sensing approach suitable for smart homes, healthcare monitoring, and mobile IoT systems. However, existing methods often encounter computational inefficiency, high latency, and limited feasibility within resource-constrained, embedded mobile edge environments. This paper proposes STAR (Sensing Technology for Activity Recognition), an edge-AI-optimized framework that integrates a lightweight neural architecture, adaptive signal processing, and hardware-aware co-optimization to enable real-time, energy-efficient HAR on low-power embedded devices. STAR incorporates a streamlined Gated Recurrent Unit (GRU)-based recurrent neural network, reducing model parameters by 33% compared to conventional LSTM models while maintaining effective temporal modeling capability. A multi-stage pre-processing pipeline combining median filtering, 8th-order Butterworth low-pass filtering, and Empirical Mode Decomposition (EMD) is employed to denoise CSI amplitude data and extract spatial-temporal features. For on-device deployment, STAR is implemented on a Rockchip RV1126 processor equipped with an embedded Neural Processing Unit (NPU), interfaced with an ESP32-S3-based CSI acquisition module. Experimental results demonstrate a mean recognition accuracy of 93.52% across seven activity classes and 99.11% for human presence detection, utilizing a compact 97.6k-parameter model. INT8 quantized inference achieves a processing speed of 33 MHz with just 8% CPU utilization, delivering sixfold speed improvements over CPU-based execution. With sub-second response latency and low power consumption, the system ensures real-time, privacy-preserving HAR, offering a practical, scalable solution for mobile and pervasive computing environments.
Abstract:WiFi Channel State Information (CSI)-based human activity recognition (HAR) provides a privacy-preserving, device-free sensing solution for smart environments. However, its deployment on edge devices is severely constrained by domain shift, where recognition performance deteriorates under varying environmental and hardware conditions. This study presents maxVSTAR (maximally adaptive Vision-guided Sensing Technology for Activity Recognition), a closed-loop, vision-guided model adaptation framework that autonomously mitigates domain shift for edge-deployed CSI sensing systems. The proposed system integrates a cross-modal teacher-student architecture, where a high-accuracy YOLO-based vision model serves as a dynamic supervisory signal, delivering real-time activity labels for the CSI data stream. These labels enable autonomous, online fine-tuning of a lightweight CSI-based HAR model, termed Sensing Technology for Activity Recognition (STAR), directly at the edge. This closed-loop retraining mechanism allows STAR to continuously adapt to environmental changes without manual intervention. Extensive experiments demonstrate the effectiveness of maxVSTAR. When deployed on uncalibrated hardware, the baseline STAR model's recognition accuracy declined from 93.52% to 49.14%. Following a single vision-guided adaptation cycle, maxVSTAR restored the accuracy to 81.51%. These results confirm the system's capacity for dynamic, self-supervised model adaptation in privacy-conscious IoT environments, establishing a scalable and practical paradigm for long-term autonomous HAR using CSI sensing at the network edge.