Human Activity Recognition (HAR) via Wi-Fi Channel State Information (CSI) presents a privacy-preserving, contactless sensing approach suitable for smart homes, healthcare monitoring, and mobile IoT systems. However, existing methods often encounter computational inefficiency, high latency, and limited feasibility within resource-constrained, embedded mobile edge environments. This paper proposes STAR (Sensing Technology for Activity Recognition), an edge-AI-optimized framework that integrates a lightweight neural architecture, adaptive signal processing, and hardware-aware co-optimization to enable real-time, energy-efficient HAR on low-power embedded devices. STAR incorporates a streamlined Gated Recurrent Unit (GRU)-based recurrent neural network, reducing model parameters by 33% compared to conventional LSTM models while maintaining effective temporal modeling capability. A multi-stage pre-processing pipeline combining median filtering, 8th-order Butterworth low-pass filtering, and Empirical Mode Decomposition (EMD) is employed to denoise CSI amplitude data and extract spatial-temporal features. For on-device deployment, STAR is implemented on a Rockchip RV1126 processor equipped with an embedded Neural Processing Unit (NPU), interfaced with an ESP32-S3-based CSI acquisition module. Experimental results demonstrate a mean recognition accuracy of 93.52% across seven activity classes and 99.11% for human presence detection, utilizing a compact 97.6k-parameter model. INT8 quantized inference achieves a processing speed of 33 MHz with just 8% CPU utilization, delivering sixfold speed improvements over CPU-based execution. With sub-second response latency and low power consumption, the system ensures real-time, privacy-preserving HAR, offering a practical, scalable solution for mobile and pervasive computing environments.