Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
Face morphing attacks present a significant threat to face recognition systems used in electronic identity enrolment and border control, particularly in single-image morphing attack detection (S-MAD) scenarios where no trusted reference is available. In spite of the vast amount of research on this problem, morph detection systems struggle in cross-dataset scenarios. To address this problem, we introduce a region-aware frequency-based morph detection strategy that drastically improves over strong baseline methods in challenging cross-dataset and cross-morph settings using a lightweight approach. Having observed the separability of bona fide and morph samples in the frequency domain of different facial parts, our approach 1) introduces the concept of residual frequency domain, where the frequency of the signal is decoupled from the natural spectral decay to easily discriminate between morph and bona fide data; 2) additionally, we reason in a global and local manner by combining the evidence from different facial regions in a Markov Random Field, which infers a globally consistent decision. The proposed method, trained exclusively on the synthetic morphing attack detection development dataset (SMDD), is evaluated in challenging cross-dataset and cross-morph settings on FRLL-Morph and MAD22 sets. Our approach achieves an average equal error rate (EER) of 1.85\% on FRLL-Morph and ranks second on MAD22 with an average EER of 6.12\%, while also obtaining a good bona fide presentation classification error rate (BPCER) at a low attack presentation classification error rate (APCER) using only spectral features. These findings indicate that Fourier-domain residual modeling with structured regional fusion offers a competitive alternative to deep S-MAD architectures.
Emotion detection from faces is one of the machine learning problems needed for human-computer interaction. The variety of methods used is enormous, which motivated an in-depth review of articles and scientific studies. Three of the most interesting and best solutions are selected, followed by the selection of three datasets that stood out for the diversity and number of images in them. The selected neural networks are trained, and then a series of experiments are performed to compare their performance, including testing on different datasets than a model was trained on. This reveals weaknesses in existing solutions, including differences between datasets, unequal levels of difficulty in recognizing certain emotions and the challenges in differentiating between closely related emotions.
Intelligent surveillance systems often handle perceptual tasks such as object detection, facial recognition, and emotion analysis independently, but they lack a unified, adaptive runtime scheduler that dynamically allocates computational resources based on contextual triggers. This limits their holistic understanding and efficiency on low-power edge devices. To address this, we present a real-time multi-modal vision framework that integrates object detection, owner-specific face recognition, and emotion detection into a unified pipeline deployed on a Raspberry Pi 5 edge platform. The core of our system is an adaptive scheduling mechanism that reduces computational load by 65\% compared to continuous processing by selectively activating modules such as, YOLOv8n for object detection, a custom FaceNet-based embedding system for facial recognition, and DeepFace's CNN for emotion classification. Experimental results demonstrate the system's efficacy, with the object detection module achieving an Average Precision (AP) of 0.861, facial recognition attaining 88\% accuracy, and emotion detection showing strong discriminatory power (AUC up to 0.97 for specific emotions), while operating at 5.6 frames per second. Our work demonstrates that context-aware scheduling is the key to unlocking complex multi-modal AI on cost-effective edge hardware, making intelligent perception more accessible and privacy-preserving.
We present BioNIC, a multi-layer feedforward neural network for emotion classification, inspired by detailed synaptic connectivity graphs from the MICrONs dataset. At a structural level, we incorporate architectural constraints derived from a single cortical column of the mouse Primary Visual Cortex(V1): connectivity imposed via adjacency masks, laminar organization, and graded inhibition representing inhibitory neurons. At the functional level, we implement biologically inspired learning: Hebbian synaptic plasticity with homeostatic regulation, Layer Normalization, data augmentation to model exposure to natural variability in sensory input, and synaptic noise to model neural stochasticity. We also include convolutional layers for spatial processing, mimicking retinotopic mapping. The model performance is evaluated on the Facial Emotion Recognition task FER-2013 and compared with a conventional baseline. Additionally, we investigate the impacts of each biological feature through a series of ablation experiments. While connectivity was limited to a single cortical column and biologically relevant connections, BioNIC achieved performance comparable to that of conventional models, with an accuracy of 59.77 $\pm$ 0.27% on FER-2013. Our findings demonstrate that integrating constraints derived from connectomics is a computationally plausible approach to developing biologically inspired artificial intelligence systems. This work also highlights the potential of new generation peta-scale connectomics data in advancing both neuroscience modeling and artificial intelligence.
This paper introduces a novel application of Video Joint-Embedding Predictive Architectures (V-JEPAs) for Facial Expression Recognition (FER). Departing from conventional pre-training methods for video understanding that rely on pixel-level reconstructions, V-JEPAs learn by predicting embeddings of masked regions from the embeddings of unmasked regions. This enables the trained encoder to not capture irrelevant information about a given video like the color of a region of pixels in the background. Using a pre-trained V-JEPA video encoder, we train shallow classifiers using the RAVDESS and CREMA-D datasets, achieving state-of-the-art performance on RAVDESS and outperforming all other vision-based methods on CREMA-D (+1.48 WAR). Furthermore, cross-dataset evaluations reveal strong generalization capabilities, demonstrating the potential of purely embedding-based pre-training approaches to advance FER. We release our code at https://github.com/lennarteingunia/vjepa-for-fer.
As multimedia content is quickly growing, the field of facial recognition has become one of the major research fields, particularly in the recent years. The most problematic area to researchers in image processing and computer vision is the human face which is a complex object with myriads of distinctive features that can be used to identify the face. The survey of this survey is particularly focused on most challenging facial characteristics, including differences in the light, ageing, variation in poses, partial occlusion, and facial expression and presents methodological solutions. The factors, therefore, are inevitable in the creation of effective facial recognition mechanisms used on facial images. This paper reviews the most sophisticated methods of facial detection which are Hidden Markov Models, Principal Component Analysis (PCA), Elastic Cluster Plot Matching, Support Vector Machine (SVM), Gabor Waves, Artificial Neural Networks (ANN), Eigenfaces, Independent Component Analysis (ICA), and 3D Morphable Model. Alongside the works mentioned above, we have also analyzed the images of a number of facial databases, namely JAFEE, FEI, Yale, LFW, AT&T (then called ORL), and AR (created by Martinez and Benavente), to analyze the results. However, this survey is aimed at giving a thorough literature review of face recognition, and its applications, and some experimental results are provided at the end after a detailed discussion.
This work presents an end-to-end pipeline for generating, refining, and evaluating adversarial patches to compromise facial biometric systems, with applications in forensic analysis and security testing. We utilize FGSM to generate adversarial noise targeting an identity classifier and employ a diffusion model with reverse diffusion to enhance imperceptibility through Gaussian smoothing and adaptive brightness correction, thereby facilitating synthetic adversarial patch evasion. The refined patch is applied to facial images to test its ability to evade recognition systems while maintaining natural visual characteristics. A Vision Transformer (ViT)-GPT2 model generates captions to provide a semantic description of a person's identity for adversarial images, supporting forensic interpretation and documentation for identity evasion and recognition attacks. The pipeline evaluates changes in identity classification, captioning results, and vulnerabilities in facial identity verification and expression recognition under adversarial conditions. We further demonstrate effective detection and analysis of adversarial patches and adversarial samples using perceptual hashing and segmentation, achieving an SSIM of 0.95.
The increasing adoption of smart classroom technologies in higher education has mainly focused on automating attendance, with limited attention given to students' emotional and cognitive engagement during lectures. This limits instructors' ability to identify disengagement and adapt teaching strategies in real time. This paper presents SCASED (Smart Classroom Attendance System with Emotion Detection), an IoT-based system that integrates automated attendance tracking with facial emotion recognition to support classroom engagement monitoring. The system uses a Raspberry Pi camera and OpenCV for face detection, and a finetuned MobileNetV2 model to classify four learning-related emotional states: engagement, boredom, confusion, and frustration. A session-based mechanism is implemented to manage attendance and emotion monitoring by recording attendance once per session and performing continuous emotion analysis thereafter. Attendance and emotion data are visualized through a cloud-based dashboard to provide instructors with insights into classroom dynamics. Experimental evaluation using the DAiSEE dataset achieved an emotion classification accuracy of 89.5%. The results show that integrating attendance data with emotion analytics can provide instructors with additional insight into classroom dynamics and support more responsive teaching practices.
Face video anonymization is aimed at privacy preservation while allowing for the analysis of videos in a number of computer vision downstream tasks such as expression recognition, people tracking, and action recognition. We propose here a novel unified framework referred to as Anon-NET, streamlined to de-identify facial videos, while preserving age, gender, race, pose, and expression of the original video. Specifically, we inpaint faces by a diffusion-based generative model guided by high-level attribute recognition and motion-aware expression transfer. We then animate deidentified faces by video-driven animation, which accepts the de-identified face and the original video as input. Extensive experiments on the datasets VoxCeleb2, CelebV-HQ, and HDTF, which include diverse facial dynamics, demonstrate the effectiveness of AnonNET in obfuscating identity while retaining visual realism and temporal consistency. The code of AnonNet will be publicly released.
Reliable stress recognition from facial videos is challenging due to stress's subjective nature and voluntary facial control. While most methods rely on Facial Action Units, the role of disentangled 3D facial geometry remains underexplored. We address this by analyzing stress during distracted driving using EMOCA-derived 3D expression and pose coefficients. Paired hypothesis tests between baseline and stressor phases reveal that 41 of 56 coefficients show consistent, phase-specific stress responses comparable to physiological markers. Building on this, we propose a Transformer-based temporal modeling framework and assess unimodal, early-fusion, and cross-modal attention strategies. Cross-Modal Attention fusion of EMOCA and physiological signals achieves best performance (AUROC 92\%, Accuracy 86.7\%), with EMOCA-gaze fusion also competitive (AUROC 91.8\%). This highlights the effectiveness of temporal modeling and cross-modal attention for stress recognition.