Abstract:Facial filters are now commonplace for social media users around the world. Previous work has demonstrated that facial filters can negatively impact automated face recognition performance. However, these studies focus on small numbers of hand-picked filters in particular styles. In order to more effectively incorporate the wide ranges of filters present on various social media applications, we introduce a framework that allows for larger-scale study of the impact of facial filters on automated recognition. This framework includes a controlled dataset of face images, a principled filter selection process that selects a representative range of filters for experimentation, and a set of experiments to evaluate the filters' impact on recognition. We demonstrate our framework with a case study of filters from the American applications Instagram and Snapchat and the Chinese applications Meitu and Pitu to uncover cross-cultural differences. Finally, we show how the filtering effect in a face embedding space can easily be detected and restored to improve face recognition performance.
Abstract:Augmented reality and other photo editing filters are popular methods used to modify images, especially images of faces, posted online. Considering the important role of human facial perception in social communication, how does exposure to an increasing number of modified faces online affect human facial perception? In this paper we present the results of six surveys designed to measure familiarity with different styles of facial filters, perceived strangeness of faces edited with different facial filters, and ability to discern whether images are filtered or not. Our results indicate that faces filtered with photo editing filters that change the image color tones, modify facial structure, or add facial beautification tend to be perceived similarly to unmodified faces; however, faces filtered with augmented reality filters (\textit{i.e.,} filters that overlay digital objects) are perceived differently from unmodified faces. We also found that responses differed based on different survey question phrasings, indicating that the shift in facial perception due to the prevalence of filtered images is noisy to detect. A better understanding of shifts in facial perception caused by facial filters will help us build online spaces more responsibly and could inform the training of more accurate and equitable facial recognition models, especially those trained with human psychophysical annotations.