Abstract:Advancement of machine learning techniques, combined with the availability of large-scale datasets, has significantly improved the accuracy and efficiency of facial recognition. Modern facial recognition systems are trained using large face datasets collected from diverse individuals or public repositories. However, for training, these datasets are often replicated and stored in multiple workstations, resulting in data replication, which complicates database management and oversight. Currently, once a user submits their face for dataset preparation, they lose control over how their data is used, raising significant privacy and ethical concerns. This paper introduces VOIDFace, a novel framework for facial recognition systems that addresses two major issues. First, it eliminates the need of data replication and improves data control to securely store training face data by using visual secret sharing. Second, it proposes a patch-based multi-training network that uses this novel training data storage mechanism to develop a robust, privacy-preserving facial recognition system. By integrating these advancements, VOIDFace aims to improve the privacy, security, and efficiency of facial recognition training, while ensuring greater control over sensitive personal face data. VOIDFace also enables users to exercise their Right-To-Be-Forgotten property to control their personal data. Experimental evaluations on the VGGFace2 dataset show that VOIDFace provides Right-To-Be-Forgotten, improved data control, security, and privacy while maintaining competitive facial recognition performance. Code is available at: https://github.com/ajnasmuhammed89/VOIDFace
Abstract:This work summarises and reports the results of the second Presentation Attack Detection competition on ID cards. This new version includes new elements compared to the previous one. (1) An automatic evaluation platform was enabled for automatic benchmarking; (2) Two tracks were proposed in order to evaluate algorithms and datasets, respectively; and (3) A new ID card dataset was shared with Track 1 teams to serve as the baseline dataset for the training and optimisation. The Hochschule Darmstadt, Fraunhofer-IGD, and Facephi company jointly organised this challenge. 20 teams were registered, and 74 submitted models were evaluated. For Track 1, the "Dragons" team reached first place with an Average Ranking and Equal Error rate (EER) of AV-Rank of 40.48% and 11.44% EER, respectively. For the more challenging approach in Track 2, the "Incode" team reached the best results with an AV-Rank of 14.76% and 6.36% EER, improving on the results of the first edition of 74.30% and 21.87% EER, respectively. These results suggest that PAD on ID cards is improving, but it is still a challenging problem related to the number of images, especially of bona fide images.