Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.




Lane detection is an important topic in the future mobility solutions. Real-world environmental challenges such as background clutter, varying illumination, and occlusions pose significant obstacles to effective lane detection, particularly when relying on data-driven approaches that require substantial effort and cost for data collection and annotation. To address these issues, lane detection methods must leverage contextual and global information from surrounding lanes and objects. In this paper, we propose a Spatial Attention Mutual Information Regularization with a pre-trained model as an Oracle, called SAMIRO. SAMIRO enhances lane detection performance by transferring knowledge from a pretrained model while preserving domain-agnostic spatial information. Leveraging SAMIRO's plug-and-play characteristic, we integrate it into various state-of-the-art lane detection approaches and conduct extensive experiments on major benchmarks such as CULane, Tusimple, and LLAMAS. The results demonstrate that SAMIRO consistently improves performance across different models and datasets. The code will be made available upon publication.
Recent work has proposed using Large Language Models (LLMs) to quantify narrative flow through a measure called sequentiality, which combines topic and contextual terms. A recent critique argued that the original results were confounded by how topics were selected for the topic-based component, and noted that the metric had not been validated against ground-truth measures of flow. That work proposed using only the contextual term as a more conceptually valid and interpretable alternative. In this paper, we empirically validate that proposal. Using two essay datasets with human-annotated trait scores, ASAP++ and ELLIPSE, we show that the contextual version of sequentiality aligns more closely with human assessments of discourse-level traits such as Organization and Cohesion. While zero-shot prompted LLMs predict trait scores more accurately than the contextual measure alone, the contextual measure adds more predictive value than both the topic-only and original sequentiality formulations when combined with standard linguistic features. Notably, this combination also outperforms the zero-shot LLM predictions, highlighting the value of explicitly modeling sentence-to-sentence flow. Our findings support the use of context-based sequentiality as a validated, interpretable, and complementary feature for automated essay scoring and related NLP tasks.
Optimizing national scientific investment requires a clear understanding of evolving research trends and the demographic and geographical forces shaping them, particularly in light of commitments to equity, diversity, and inclusion. This study addresses this need by analyzing 18 years (2005-2022) of research proposals funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). We conducted a comprehensive comparative evaluation of three topic modelling approaches: Latent Dirichlet Allocation (LDA), Structural Topic Modelling (STM), and BERTopic. We also introduced a novel algorithm, named COFFEE, designed to enable robust covariate effect estimation for BERTopic. This advancement addresses a significant gap, as BERTopic lacks a native function for covariate analysis, unlike the probabilistic STM. Our findings highlight that while all models effectively delineate core scientific domains, BERTopic outperformed by consistently identifying more granular, coherent, and emergent themes, such as the rapid expansion of artificial intelligence. Additionally, the covariate analysis, powered by COFFEE, confirmed distinct provincial research specializations and revealed consistent gender-based thematic patterns across various scientific disciplines. These insights offer a robust empirical foundation for funding organizations to formulate more equitable and impactful funding strategies, thereby enhancing the effectiveness of the scientific ecosystem.
The Directed Acyclic Graph (DAG) task model for real-time scheduling finds its primary practical target in Robot Operating System 2 (ROS 2). However, ROS 2's publish/subscribe API leaves DAG precedence constraints unenforced: a callback may publish mid-execution, and multi-input callbacks let developers choose topic-matching policies. Thus preserving DAG semantics relies on conventions; once violated, the model collapses. We propose the Function-as-Subtask (FasS) API, which expresses each subtask as a function whose arguments/return values are the subtask's incoming/outgoing edges. By minimizing description freedom, DAG semantics is guaranteed at the API rather than by programmer discipline. We implement a DAG-native scheduler using FasS on a Rust-based experimental kernel and evaluate its semantic fidelity, and we outline design guidelines for applying FasS to Linux Linux sched_ext.
Social media has reshaped political discourse, offering politicians a platform for direct engagement while reinforcing polarization and ideological divides. This study introduces a novel topic evolution framework that integrates BERTopic-based topic modeling with Moral Foundations Theory (MFT) to analyze the longevity and moral dimensions of political topics in Twitter activity during the 117th U.S. Congress. We propose a methodology for tracking dynamic topic shifts over time and measuring their association with moral values and quantifying topic persistence. Our findings reveal that while overarching themes remain stable, granular topics tend to dissolve rapidly, limiting their long-term influence. Moreover, moral foundations play a critical role in topic longevity, with Care and Loyalty dominating durable topics, while partisan differences manifest in distinct moral framing strategies. This work contributes to the field of social network analysis and computational political discourse by offering a scalable, interpretable approach to understanding moral-driven topic evolution on social media.
Vertex hunting (VH) is the task of estimating a simplex from noisy data points and has many applications in areas such as network and text analysis. We introduce a new variant, semi-supervised vertex hunting (SSVH), in which partial information is available in the form of barycentric coordinates for some data points, known only up to an unknown transformation. To address this problem, we develop a method that leverages properties of orthogonal projection matrices, drawing on novel insights from linear algebra. We establish theoretical error bounds for our method and demonstrate that it achieves a faster convergence rate than existing unsupervised VH algorithms. Finally, we apply SSVH to two practical settings, semi-supervised network mixed membership estimation and semi-supervised topic modeling, resulting in efficient and scalable algorithms.
The diffusion of ideas and language in society has conventionally been described by S-shaped models, such as the logistic curve. However, the role of sub-exponential growth -- a slower-than-exponential pattern known in epidemiology -- has been largely overlooked in broader social phenomena. Here, we present a piecewise power-law model to characterize complex growth curves with a few parameters. We systematically analyzed a large-scale dataset of approximately one billion Japanese blog articles linked to Wikipedia vocabulary, and observed consistent patterns in web search trend data (English, Spanish, and Japanese). Our analysis of 2,963 items, selected for reliable estimation (e.g., sufficient duration/peak, monotonic growth), reveals that 1,625 (55%) diffusion patterns without abrupt level shifts were adequately described by one or two segments. For single-segment curves, we found that (i) the mode of the shape parameter $α$ was near 0.5, indicating prevalent sub-exponential growth; (ii) the peak diffusion scale is primarily determined by the growth rate $R$, with minor contributions from $α$ or the duration $T$; and (iii) $α$ showed a tendency to vary with the nature of the topic, being smaller for niche/local topics and larger for widely shared ones. Furthermore, a micro-behavioral model of outward (stranger) vs. inward (community) contact suggests that $α$ can be interpreted as an index of the preference for outward-oriented communication. These findings suggest that sub-exponential growth is a common pattern of social diffusion, and our model provides a practical framework for consistently describing, comparing, and interpreting complex and diverse growth curves.
In the context of pretraining of Large Language Models (LLMs), synthetic data has emerged as an alternative for generating high-quality pretraining data at scale. This is particularly beneficial in low-resource language settings where the benefits of recent LLMs have been unevenly distributed across languages. In this work, we present a systematic study on the generation and evaluation of synthetic multilingual pretraining data for Indic languages, where we construct a large-scale synthetic dataset BhashaKritika, comprising 540B tokens using 5 different techniques for 10 languages. We explore the impact of grounding generation in documents, personas, and topics. We analyze how language choice, both in the prompt instructions and document grounding, affects data quality, and we compare translations of English content with native generation in Indic languages. To support scalable and language-sensitive evaluation, we introduce a modular quality evaluation pipeline that integrates script and language detection, metadata consistency checks, n-gram repetition analysis, and perplexity-based filtering using KenLM models. Our framework enables robust quality control across diverse scripts and linguistic contexts. Empirical results through model runs reveal key trade-offs in generation strategies and highlight best practices for constructing effective multilingual corpora.




Retrieval-Augmented Generation (RAG) systems deployed over proprietary knowledge bases face growing threats from reconstruction attacks that aggregate model responses to replicate knowledge bases. Such attacks exploit both intra-class and inter-class paths, progressively extracting fine-grained knowledge within topics and diffusing it across semantically related ones, thereby enabling comprehensive extraction of the original knowledge base. However, existing defenses target only one path, leaving the other unprotected. We conduct a systematic exploration to assess the impact of protecting each path independently and find that joint protection is essential for effective defense. Based on this, we propose RAGFort, a structure-aware dual-module defense combining "contrastive reindexing" for inter-class isolation and "constrained cascade generation" for intra-class protection. Experiments across security, performance, and robustness confirm that RAGFort significantly reduces reconstruction success while preserving answer quality, offering comprehensive defense against knowledge base extraction attacks.
While large language models (LLMs) show transformative potential in healthcare, their development remains focused on high-resource languages, creating a critical barrier for others as simple translation fails to capture unique clinical and cultural nuances, such as endemic diseases. To address this, we introduce MedPT, the first large-scale, real-world corpus for Brazilian Portuguese, comprising 384,095 authentic question-answer pairs from patient-doctor interactions. The dataset underwent a meticulous multi-stage curation protocol, using a hybrid quantitative-qualitative analysis to filter noise and contextually enrich thousands of ambiguous queries. We further augmented the corpus via LLM-driven annotation, classifying questions into seven semantic types to capture user intent. Our analysis reveals its thematic breadth (3,200 topics) and unique linguistic properties, like the natural asymmetry in patient-doctor communication. To validate its utility, we benchmark a medical specialty routing task: fine-tuning a 1.7B parameter model achieves an outstanding 94\% F1-score on a 20-class setup. Furthermore, our qualitative error analysis shows misclassifications are not random but reflect genuine clinical ambiguities (e.g., between comorbid conditions), proving the dataset's deep semantic richness. We publicly release MedPT to foster the development of more equitable, accurate, and culturally-aware medical technologies for the Portuguese-speaking world.