Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Conspiratorial discourse is increasingly embedded within digital communication ecosystems, yet its structure and spread remain difficult to study. This work analyzes conspiratorial narratives in Singapore-based Telegram groups, showing that such content is woven into everyday discussions rather than confined to isolated echo chambers. We propose a two-stage computational framework. First, we fine-tune RoBERTa-large to classify messages as conspiratorial or not, achieving an F1-score of 0.866 on 2,000 expert-labeled messages. Second, we build a signed belief graph in which nodes represent messages and edge signs reflect alignment in belief labels, weighted by textual similarity. We introduce a Signed Belief Graph Neural Network (SiBeGNN) that uses a Sign Disentanglement Loss to learn embeddings that separate ideological alignment from stylistic features. Using hierarchical clustering on these embeddings, we identify seven narrative archetypes across 553,648 messages: legal topics, medical concerns, media discussions, finance, contradictions in authority, group moderation, and general chat. SiBeGNN yields stronger clustering quality (cDBI = 8.38) than baseline methods (13.60 to 67.27), supported by 88 percent inter-rater agreement in expert evaluations. Our analysis shows that conspiratorial messages appear not only in clusters focused on skepticism or distrust, but also within routine discussions of finance, law, and everyday matters. These findings challenge common assumptions about online radicalization by demonstrating that conspiratorial discourse operates within ordinary social interaction. The proposed framework advances computational methods for belief-driven discourse analysis and offers applications for stance detection, political communication studies, and content moderation policy.




This paper proposes a topic modeling method that scales linearly to billions of documents. We make three core contributions: i) we present a topic modeling method, Tensor Latent Dirichlet Allocation (TLDA), that has identifiable and recoverable parameter guarantees and sample complexity guarantees for large data; ii) we show that this method is computationally and memory efficient (achieving speeds over 3-4x those of prior parallelized Latent Dirichlet Allocation (LDA) methods), and that it scales linearly to text datasets with over a billion documents; iii) we provide an open-source, GPU-based implementation, of this method. This scaling enables previously prohibitive analyses, and we perform two real-world, large-scale new studies of interest to political scientists: we provide the first thorough analysis of the evolution of the #MeToo movement through the lens of over two years of Twitter conversation and a detailed study of social media conversations about election fraud in the 2020 presidential election. Thus this method provides social scientists with the ability to study very large corpora at scale and to answer important theoretically-relevant questions about salient issues in near real-time.
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
We introduce Stylized Meta-Album (SMA), a new image classification meta-dataset comprising 24 datasets (12 content datasets, and 12 stylized datasets), designed to advance studies on out-of-distribution (OOD) generalization and related topics. Created using style transfer techniques from 12 subject classification datasets, SMA provides a diverse and extensive set of 4800 groups, combining various subjects (objects, plants, animals, human actions, textures) with multiple styles. SMA enables flexible control over groups and classes, allowing us to configure datasets to reflect diverse benchmark scenarios. While ideally, data collection would capture extensive group diversity, practical constraints often make this infeasible. SMA addresses this by enabling large and configurable group structures through flexible control over styles, subject classes, and domains-allowing datasets to reflect a wide range of real-world benchmark scenarios. This design not only expands group and class diversity, but also opens new methodological directions for evaluating model performance across diverse group and domain configurations-including scenarios with many minority groups, varying group imbalance, and complex domain shifts-and for studying fairness, robustness, and adaptation under a broader range of realistic conditions. To demonstrate SMA's effectiveness, we implemented two benchmarks: (1) a novel OOD generalization and group fairness benchmark leveraging SMA's domain, class, and group diversity to evaluate existing benchmarks. Our findings reveal that while simple balancing and algorithms utilizing group information remain competitive as claimed in previous benchmarks, increasing group diversity significantly impacts fairness, altering the superiority and relative rankings of algorithms. We also propose to use \textit{Top-M worst group accuracy} as a new hyperparameter tuning metric, demonstrating broader fairness during optimization and delivering better final worst-group accuracy for larger group diversity. (2) An unsupervised domain adaptation (UDA) benchmark utilizing SMA's group diversity to evaluate UDA algorithms across more scenarios, offering a more comprehensive benchmark with lower error bars (reduced by 73\% and 28\% in closed-set setting and UniDA setting, respectively) compared to existing efforts. These use cases highlight SMA's potential to significantly impact the outcomes of conventional benchmarks.
A challenge in fine-tuning text-to-image diffusion models for specific topics is to select good examples. Fine-tuning from image sets of varying quality, such as Wikipedia Commons, will often produce poor output. However, training images that \textit{do} exemplify the target concept (e.g., a \textit{female Mountain Bluebird}) help ensure that the generated images are similarly representative (e.g., have the prototypical blue-wings and gray chest). In this work, we propose QZLoRA, a framework to select images for low-rank adaptation (LoRA). The approach leverages QuizRank, a method to automatically rank images by treating them as an `educational intervention' and `quizzing' a VLM. We demonstrate that QZLoRA can produce better aligned, photorealistic images with fewer samples. We also show that these fine-tuned models can produce stylized that are similarly representative (i.e., illustrations). Our results highlight the promise of combining automated visual reasoning with parameter-efficient fine-tuning for topic-adaptive generative modeling.
This paper presents a bibliometric analysis of the field of short-term passenger flow forecasting within local public transit, covering 814 publications that span from 1984 to 2024. In addition to common bibliometric analysis tools, a variant of a citation network was developed, and topic modelling was conducted. The analysis reveals that research activity exhibited sporadic patterns prior to 2008, followed by a marked acceleration, characterised by a shift from conventional statistical and machine learning methodologies (e.g., ARIMA, SVM, and basic neural networks) to specialised deep learning architectures. Based on this insight, a connection to more general fields such as machine learning and time series modelling was established. In addition to modelling, spatial, linguistic, and modal biases were identified and findings from existing secondary literature were validated and quantified. This revealed existing gaps, such as constrained data fusion, open (multivariate) data, and underappreciated challenges related to model interpretability, cost-efficiency, and a balance between algorithmic performance and practical deployment considerations. In connection with the superordinate fields, the growth in relevance of foundation models is also noteworthy.
Artificial intelligence (AI) and large language models (LLM) are reshaping science, with most recent advances culminating in fully-automated scientific discovery pipelines. But qualitative research has been left behind. Researchers in qualitative methods are hesitant about AI adoption. Yet when they are willing to use AI at all, they have little choice but to rely on general-purpose tools like ChatGPT to assist with interview interpretation, data annotation, and topic modeling - while simultaneously acknowledging these system's well-known limitations of being biased, opaque, irreproducible, and privacy-compromising. This creates a critical gap: while AI has substantially advanced quantitative methods, the qualitative dimensions essential for meaning-making and comprehensive scientific understanding remain poorly integrated. We argue for developing dedicated qualitative AI systems built from the ground up for interpretive research. Such systems must be transparent, reproducible, and privacy-friendly. We review recent literature to show how existing automated discovery pipelines could be enhanced by robust qualitative capabilities, and identify key opportunities where safe qualitative AI could advance multidisciplinary and mixed-methods research.

In democracies like India, people are free to express their views and demands. Sometimes this causes situations of civil unrest such as protests, rallies, and marches. These events may be disruptive in nature and are often held without prior permission from the competent authority. Forecasting these events helps administrative officials take necessary action. Usually, protests are announced well in advance to encourage large participation. Therefore, by analyzing such announcements in news articles, planned events can be forecasted beforehand. We developed such a system in this paper to forecast social unrest events using topic modeling and word2vec to filter relevant news articles, and Named Entity Recognition (NER) methods to identify entities such as people, organizations, locations, and dates. Time normalization is applied to convert future date mentions into a standard format. In this paper, we have developed a geographically independent, generalized model to identify key features for filtering civil unrest events. There could be many mentions of entities, but only a few may actually be involved in the event. This paper calls such entities Related Entities and proposes a method to extract them, referred to as Related Entity Extraction.
The recent success of large language models (LLMs) has sparked a growing interest in training large-scale models. As the model size continues to scale, concerns are growing about the depletion of high-quality, well-curated training data. This has led practitioners to explore training approaches like Federated Learning (FL), which can leverage the abundant data on edge devices while maintaining privacy. However, the decentralization of training datasets in FL introduces challenges to scaling large models, a topic that remains under-explored. This paper fills this gap and provides qualitative insights on generalizing the previous model scaling experience to federated learning scenarios. Specifically, we derive a PAC-Bayes (Probably Approximately Correct Bayesian) upper bound for the generalization error of models trained with stochastic algorithms in federated settings and quantify the impact of distributed training data on the optimal model size by finding the analytic solution of model size that minimizes this bound. Our theoretical results demonstrate that the optimal model size has a negative power law relationship with the number of clients if the total training compute is unchanged. Besides, we also find that switching to FL with the same training compute will inevitably reduce the upper bound of generalization performance that the model can achieve through training, and that estimating the optimal model size in federated scenarios should depend on the average training compute across clients. Furthermore, we also empirically validate the correctness of our results with extensive training runs on different models, network settings, and datasets.




Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for nonnegative data, with applications such as hyperspectral unmixing and topic modeling. NMF is a difficult problem in general (NP-hard), and its solutions are typically not unique. To address these two issues, additional constraints or assumptions are often used. In particular, separability assumes that the basis vectors in the NMF are equal to some columns of the input matrix. In that case, the problem is referred to as separable NMF (SNMF) and can be solved in polynomial-time with robustness guarantees, while identifying a unique solution. However, in real-world scenarios, due to noise or variability, multiple data points may lie near the basis vectors, which SNMF does not leverage. In this work, we rely on the smooth separability assumption, which assumes that each basis vector is close to multiple data points. We explore the properties of the corresponding problem, referred to as smooth SNMF (SSNMF), and examine how it relates to SNMF and orthogonal NMF. We then propose a convex model for SSNMF and show that it provably recovers the sought-after factors, even in the presence of noise. We finally adapt an existing fast gradient method to solve this convex model for SSNMF, and show that it compares favorably with state-of-the-art methods on both synthetic and hyperspectral datasets.