Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Adopting Large language models (LLMs) in organizations potentially revolutionizes our lives and work. However, they can generate off-topic, discriminating, or harmful content. This AI alignment problem often stems from misspecifications during the LLM adoption, unnoticed by the principal due to the LLM's black-box nature. While various research disciplines investigated AI alignment, they neither address the information asymmetries between organizational adopters and black-box LLM agents nor consider organizational AI adoption processes. Therefore, we propose LLM ATLAS (LLM Agency Theory-Led Alignment Strategy) a conceptual framework grounded in agency (contract) theory, to mitigate alignment problems during organizational LLM adoption. We conduct a conceptual literature analysis using the organizational LLM adoption phases and the agency theory as concepts. Our approach results in (1) providing an extended literature analysis process specific to AI alignment methods during organizational LLM adoption and (2) providing a first LLM alignment problem-solution space.
Retrieval-Augmented Generation systems often suffer from a gap between optimizing retrieval relevance and generative utility: retrieved documents may be topically relevant but still lack the content needed for effective reasoning during generation. While existing "bridge" modules attempt to rewrite the retrieved text for better generation, we show how they fail to capture true document utility. In this work, we propose R2U, with a key distinction of directly optimizing to maximize the probability of generating a correct answer through process supervision. As such direct observation is expensive, we also propose approximating an efficient distillation pipeline by scaling the supervision from LLMs, which helps the smaller rewriter model generalize better. We evaluate our method across multiple open-domain question-answering benchmarks. The empirical results demonstrate consistent improvements over strong bridging baselines.
Federated learning has the potential to unlock siloed data and distributed resources by enabling collaborative model training without sharing private data. As more complex foundational models gain widespread use, the need to expand training resources and integrate privately owned data grows as well. In this article, we explore the intersection of federated learning and foundational models, aiming to identify, categorize, and characterize technical methods that integrate the two paradigms. As a unified survey is currently unavailable, we present a literature survey structured around a novel taxonomy that follows the development life-cycle stages, along with a technical comparison of available methods. Additionally, we provide practical insights and guidelines for implementing and evolving these methods, with a specific focus on the healthcare domain as a case study, where the potential impact of federated learning and foundational models is considered significant. Our survey covers multiple intersecting topics, including but not limited to federated learning, self-supervised learning, fine-tuning, distillation, and transfer learning. Initially, we retrieved and reviewed a set of over 4,200 articles. This collection was narrowed to more than 250 thoroughly reviewed articles through inclusion criteria, featuring 42 unique methods. The methods were used to construct the taxonomy and enabled their comparison based on complexity, efficiency, and scalability. We present these results as a self-contained overview that not only summarizes the state of the field but also provides insights into the practical aspects of adopting, evolving, and integrating foundational models with federated learning.
The emergence of large language models (LLMs) has brought a new paradigm to automated essay scoring (AES), a long-standing and practical application of natural language processing in education. However, achieving human-level multi-perspective understanding and judgment remains a challenge. In this work, we propose Roundtable Essay Scoring (RES), a multi-agent evaluation framework designed to perform precise and human-aligned scoring under a zero-shot setting. RES constructs evaluator agents based on LLMs, each tailored to a specific prompt and topic context. Each agent independently generates a trait-based rubric and conducts a multi-perspective evaluation. Then, by simulating a roundtable-style discussion, RES consolidates individual evaluations through a dialectical reasoning process to produce a final holistic score that more closely aligns with human evaluation. By enabling collaboration and consensus among agents with diverse evaluation perspectives, RES outperforms prior zero-shot AES approaches. Experiments on the ASAP dataset using ChatGPT and Claude show that RES achieves up to a 34.86% improvement in average QWK over straightforward prompting (Vanilla) methods.




Objectivity in journalism has long been contested, oscillating between ideals of neutral, fact-based reporting and the inevitability of subjective framing. With the advent of large language models (LLMs), these tensions are now mediated by algorithmic systems whose training data and design choices may themselves embed cultural or ideological biases. This study investigates geopolitical parallax-systematic divergence in news quality and subjectivity assessments-by comparing article-level embeddings from Chinese-origin (Qwen, BGE, Jina) and Western-origin (Snowflake, Granite) model families. We evaluate both on a human-annotated news quality benchmark spanning fifteen stylistic, informational, and affective dimensions, and on parallel corpora covering politically sensitive topics, including Palestine and reciprocal China-United States coverage. Using logistic regression probes and matched-topic evaluation, we quantify per-metric differences in predicted positive-class probabilities between model families. Our findings reveal consistent, non-random divergences aligned with model origin. In Palestine-related coverage, Western models assign higher subjectivity and positive emotion scores, while Chinese models emphasize novelty and descriptiveness. Cross-topic analysis shows asymmetries in structural quality metrics Chinese-on-US scoring notably lower in fluency, conciseness, technicality, and overall quality-contrasted by higher negative emotion scores. These patterns align with media bias theory and our distinction between semantic, emotional, and relational subjectivity, and extend LLM bias literature by showing that geopolitical framing effects persist in downstream quality assessment tasks. We conclude that LLM-based media evaluation pipelines require cultural calibration to avoid conflating content differences with model-induced bias.
Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models' ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.
Explainable AI (XAI) has become an increasingly important topic for understanding and attributing the predictions made by complex Time Series Classification (TSC) models. Among attribution methods, SHapley Additive exPlanations (SHAP) is widely regarded as an excellent attribution method; but its computational complexity, which scales exponentially with the number of features, limits its practicality for long time series. To address this, recent studies have shown that aggregating features via segmentation, to compute a single attribution value for a group of consecutive time points, drastically reduces SHAP running time. However, the choice of the optimal segmentation strategy remains an open question. In this work, we investigated eight different Time Series Segmentation algorithms to understand how segment compositions affect the explanation quality. We evaluate these approaches using two established XAI evaluation methodologies: InterpretTime and AUC Difference. Through experiments on both Multivariate (MTS) and Univariate Time Series (UTS), we find that the number of segments has a greater impact on explanation quality than the specific segmentation method. Notably, equal-length segmentation consistently outperforms most of the custom time series segmentation algorithms. Furthermore, we introduce a novel attribution normalisation technique that weights segments by their length and we show that it consistently improves attribution quality.




Multimodal Large Language Models (MLLMs) equipped with step-by-step thinking capabilities have demonstrated remarkable performance on complex reasoning problems. However, this thinking process is redundant for simple problems solvable without complex reasoning. To address this inefficiency, we propose R-4B, an auto-thinking MLLM, which can adaptively decide when to think based on problem complexity. The central idea of R-4B is to empower the model with both thinking and non-thinking capabilities using bi-mode annealing, and apply Bi-mode Policy Optimization~(BPO) to improve the model's accuracy in determining whether to activate the thinking process. Specifically, we first train the model on a carefully curated dataset spanning various topics, which contains samples from both thinking and non-thinking modes. Then it undergoes a second phase of training under an improved GRPO framework, where the policy model is forced to generate responses from both modes for each input query. Experimental results show that R-4B achieves state-of-the-art performance across 25 challenging benchmarks. It outperforms Qwen2.5-VL-7B in most tasks and achieves performance comparable to larger models such as Kimi-VL-A3B-Thinking-2506 (16B) on reasoning-intensive benchmarks with lower computational cost.
Modern smartphones are equipped with Lidar sensors providing depth-sensing capabilities. Recent works have shown that this complementary sensor allows to improve various tasks in image processing, including deblurring. However, there is a current lack of datasets with realistic blurred images and paired mobile Lidar depth maps to further study the topic. At the same time, there is also a lack of blind zero-shot methods that can deblur a real image using the depth guidance without requiring extensive training sets of paired data. In this paper, we propose an image deblurring method based on denoising diffusion models that can leverage the Lidar depth guidance and does not require training data with paired Lidar depth maps. We also present the first dataset with real blurred images with corresponding Lidar depth maps and sharp ground truth images, acquired with an Apple iPhone 15 Pro, for the purpose of studying Lidar-guided deblurring. Experimental results on this novel dataset show that Lidar guidance is effective and the proposed method outperforms state-of-the-art deblurring methods in terms of perceptual quality.
Neurosymbolic (NeSy) frameworks combine neural representations and learning with symbolic representations and reasoning. Combining the reasoning capacities, explainability, and interpretability of symbolic processing with the flexibility and power of neural computing allows us to solve complex problems with more reliability while being data-efficient. However, this recently growing topic poses a challenge to developers with its learning curve, lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we characterize the technical facets of existing NeSy frameworks, such as the symbolic representation language, integration with neural models, and the underlying algorithms. A majority of the NeSy research focuses on algorithms instead of providing generic frameworks for declarative problem specification to leverage problem solving. To highlight the key aspects of Neurosymbolic modeling, we showcase three generic NeSy frameworks - \textit{DeepProbLog}, \textit{Scallop}, and \textit{DomiKnowS}. We identify the challenges within each facet that lay the foundation for identifying the expressivity of each framework in solving a variety of problems. Building on this foundation, we aim to spark transformative action and encourage the community to rethink this problem in novel ways.