Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Mar 19, 2025
Abstract:LLMs have achieved remarkable fluency and coherence in text generation, yet their widespread adoption has raised concerns about content reliability and accountability. In high-stakes domains such as healthcare, law, and news, it is crucial to understand where and how the content is created. To address this, we introduce the Text pROVEnance (TROVE) challenge, designed to trace each sentence of a target text back to specific source sentences within potentially lengthy or multi-document inputs. Beyond identifying sources, TROVE annotates the fine-grained relationships (quotation, compression, inference, and others), providing a deep understanding of how each target sentence is formed. To benchmark TROVE, we construct our dataset by leveraging three public datasets covering 11 diverse scenarios (e.g., QA and summarization) in English and Chinese, spanning source texts of varying lengths (0-5k, 5-10k, 10k+), emphasizing the multi-document and long-document settings essential for provenance. To ensure high-quality data, we employ a three-stage annotation process: sentence retrieval, GPT provenance, and human provenance. We evaluate 11 LLMs under direct prompting and retrieval-augmented paradigms, revealing that retrieval is essential for robust performance, larger models perform better in complex relationship classification, and closed-source models often lead, yet open-source models show significant promise, particularly with retrieval augmentation.
* 15 pages
Via

Mar 26, 2025
Abstract:Rapid and efficient assessment of the future impact of research articles is a significant concern for both authors and reviewers. The most common standard for measuring the impact of academic papers is the number of citations. In recent years, numerous efforts have been undertaken to predict citation counts within various citation windows. However, most of these studies focus solely on a specific academic field or require early citation counts for prediction, rendering them impractical for the early-stage evaluation of papers. In this work, we harness Scopus to curate a significantly comprehensive and large-scale dataset of information from 69707 scientific articles sourced from 99 journals spanning multiple disciplines. We propose a deep learning methodology for the impact-based classification tasks, which leverages semantic features extracted from the manuscripts and paper metadata. To summarize the semantic features, such as titles and abstracts, we employ a Transformer-based language model to encode semantic features and design a text fusion layer to capture shared information between titles and abstracts. We specifically focus on the following impact-based prediction tasks using information of scientific manuscripts in pre-publication stage: (1) The impact of journals in which the manuscripts will be published. (2) The future impact of manuscripts themselves. Extensive experiments on our datasets demonstrate the superiority of our proposed model for impact-based prediction tasks. We also demonstrate potentials in generating manuscript's feedback and improvement suggestions.
Via

Mar 18, 2025
Abstract:Widely observed data scaling laws, in which error falls off as a power of the training size, demonstrate the diminishing returns of unselective data expansion. Hence, data governance is proposed to downsize datasets through pruning non-informative samples. Yet, isolating the impact of a specific sample on overall model performance is challenging, due to the vast computation required for tryout all sample combinations. Current data governors circumvent this complexity by estimating sample contributions through heuristic-derived scalar scores, thereby discarding low-value ones. Despite thorough sample sieving, retained samples contain substantial undesired tokens intrinsically, underscoring the potential for further compression and purification. In this work, we upgrade data governance from a 'sieving' approach to a 'juicing' one. Instead of scanning for least-flawed samples, our dual-branch DataJuicer applies finer-grained intra-sample governance. It squeezes out informative tokens and boosts image-text alignments. Specifically, the vision branch retains salient image patches and extracts relevant object classes, while the text branch incorporates these classes to enhance captions. Consequently, DataJuicer yields more refined datasets through finer-grained governance. Extensive experiments across datasets demonstrate that DataJuicer significantly outperforms existing DataSieve in image-text retrieval, classification, and dense visual reasoning.
Via

Mar 25, 2025
Abstract:Computational phenotyping is essential for biomedical research but often requires significant time and resources, especially since traditional methods typically involve extensive manual data review. While machine learning and natural language processing advancements have helped, further improvements are needed. Few studies have explored using Large Language Models (LLMs) for these tasks despite known advantages of LLMs for text-based tasks. To facilitate further research in this area, we developed an evaluation framework, Evaluation of PHEnotyping for Observational Health Data (PHEONA), that outlines context-specific considerations. We applied and demonstrated PHEONA on concept classification, a specific task within a broader phenotyping process for Acute Respiratory Failure (ARF) respiratory support therapies. From the sample concepts tested, we achieved high classification accuracy, suggesting the potential for LLM-based methods to improve computational phenotyping processes.
* 2 figures, 5 tables, submitted to 2025 AMIA Annual Symposium
Via

Mar 25, 2025
Abstract:This study addresses the technical bottlenecks in handling long text and the "hallucination" issue caused by insufficient short text information in remote sensing vision-language foundation models (VLFM). We propose a novel vision-language foundation model, LRSCLIP, and a multimodal dataset, LRS2M. The main contributions are as follows: (1) By integrating multi-source remote sensing data and adopting a large language model labeling strategy, we construct the LRS2M dataset, which contains 2 million image-text pairs, providing both short and long texts for the first time, thus solving the problem of semantic granularity limitations in existing datasets; (2) The design of the LRSCLIP architecture based on Long-CLIP's KPS module, which extends CLIP's text processing capacity and achieves fine-grained cross-modal feature alignment through a dual-text loss weighting mechanism. Experimental results show that LRSCLIP improves retrieval accuracy by 10\%-20\% over the Long-CLIP baseline in the zero-shot long-text cross-modal retrieval task. For the zero-shot short-text cross-modal retrieval task, LRSCLIP achieves improvements over the current best model, GeoRSCLIP, with increases of 0.17\%, 0.67\%, and 0.92\% in Text to Image R@1, Image to Text R@1, and mR on RSITMD, respectively, and 0.04\%, 2.93\%, and 1.28\% on RSICD. In the zero-shot image classification task (average accuracy=75.75\%) and semantic localization task (Rmi=0.7653), LRSCLIP achieves state-of-the-art performance. These results validate the dual advantages of fine-grained semantic understanding and global feature matching in LRSCLIP. This work provides a new benchmark model and data support for remote sensing multimodal learning. The related code has been open source and is available at https://github.com/MitsuiChen14/LRSCLIP.
* 17 pages, 12 figures
Via

Mar 26, 2025
Abstract:Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.
Via

Mar 13, 2025
Abstract:Large Language Models (LLMs) have demonstrated potential in predicting mental health outcomes from online text, yet traditional classification methods often lack interpretability and robustness. This study evaluates structured reasoning techniques-Chain-of-Thought (CoT), Self-Consistency (SC-CoT), and Tree-of-Thought (ToT)-to improve classification accuracy across multiple mental health datasets sourced from Reddit. We analyze reasoning-driven prompting strategies, including Zero-shot CoT and Few-shot CoT, using key performance metrics such as Balanced Accuracy, F1 score, and Sensitivity/Specificity. Our findings indicate that reasoning-enhanced techniques improve classification performance over direct prediction, particularly in complex cases. Compared to baselines such as Zero Shot non-CoT Prompting, and fine-tuned pre-trained transformers such as BERT and Mental-RoBerta, and fine-tuned Open Source LLMs such as Mental Alpaca and Mental-Flan-T5, reasoning-driven LLMs yield notable gains on datasets like Dreaddit (+0.52\% over M-LLM, +0.82\% over BERT) and SDCNL (+4.67\% over M-LLM, +2.17\% over BERT). However, performance declines in Depression Severity, and CSSRS predictions suggest dataset-specific limitations, likely due to our using a more extensive test set. Among prompting strategies, Few-shot CoT consistently outperforms others, reinforcing the effectiveness of reasoning-driven LLMs. Nonetheless, dataset variability highlights challenges in model reliability and interpretability. This study provides a comprehensive benchmark of reasoning-based LLM techniques for mental health text classification. It offers insights into their potential for scalable clinical applications while identifying key challenges for future improvements.
* 8 pages, 4 Figures, 3 tables
Via

Mar 10, 2025
Abstract:This work adapts and studies the gradient-based Membership Inference Test (gMINT) to the classification of text based on LLMs. MINT is a general approach intended to determine if given data was used for training machine learning models, and this work focuses on its application to the domain of Natural Language Processing. Using gradient-based analysis, the MINT model identifies whether particular data samples were included during the language model training phase, addressing growing concerns about data privacy in machine learning. The method was evaluated in seven Transformer-based models and six datasets comprising over 2.5 million sentences, focusing on text classification tasks. Experimental results demonstrate MINTs robustness, achieving AUC scores between 85% and 99%, depending on data size and model architecture. These findings highlight MINTs potential as a scalable and reliable tool for auditing machine learning models, ensuring transparency, safeguarding sensitive data, and fostering ethical compliance in the deployment of AI/NLP technologies.
Via

Mar 11, 2025
Abstract:Motivation: Despite recent advancements in semantic representation driven by pre-trained and large-scale language models, addressing long tail challenges in multi-label text classification remains a significant issue. Long tail challenges have persistently posed difficulties in accurately classifying less frequent labels. Current approaches often focus on improving text semantics while neglecting the crucial role of label relationships. Results: This paper introduces LabelCoRank, a novel approach inspired by ranking principles. LabelCoRank leverages label co-occurrence relationships to refine initial label classifications through a dual-stage reranking process. The first stage uses initial classification results to form a preliminary ranking. In the second stage, a label co-occurrence matrix is utilized to rerank the preliminary results, enhancing the accuracy and relevance of the final classifications. By integrating the reranked label representations as additional text features, LabelCoRank effectively mitigates long tail issues in multi-labeltext classification. Experimental evaluations on popular datasets including MAG-CS, PubMed, and AAPD demonstrate the effectiveness and robustness of LabelCoRank.
Via

Mar 21, 2025
Abstract:Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples for in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods.
Via
