Abstract:The use of language technologies in high-stake settings is increasing in recent years, mostly motivated by the success of Large Language Models (LLMs). However, despite the great performance of LLMs, they are are susceptible to ethical concerns, such as demographic biases, accountability, or privacy. This work seeks to analyze the capacity of Transformers-based systems to learn demographic biases present in the data, using a case study on AI-based automated recruitment. We propose a privacy-enhancing framework to reduce gender information from the learning pipeline as a way to mitigate biased behaviors in the final tools. Our experiments analyze the influence of data biases on systems built on two different LLMs, and how the proposed framework effectively prevents trained systems from reproducing the bias in the data.
Abstract:Demographic bias in high-performance face recognition (FR) systems often eludes detection by existing metrics, especially with respect to subtle disparities in the tails of the score distribution. We introduce the Comprehensive Equity Index (CEI), a novel metric designed to address this limitation. CEI uniquely analyzes genuine and impostor score distributions separately, enabling a configurable focus on tail probabilities while also considering overall distribution shapes. Our extensive experiments (evaluating state-of-the-art FR systems, intentionally biased models, and diverse datasets) confirm CEI's superior ability to detect nuanced biases where previous methods fall short. Furthermore, we present CEI^A, an automated version of the metric that enhances objectivity and simplifies practical application. CEI provides a robust and sensitive tool for operational FR fairness assessment. The proposed methods have been developed particularly for bias evaluation in face biometrics but, in general, they are applicable for comparing statistical distributions in any problem where one is interested in analyzing the distribution tails.
Abstract:Human pose estimation has witnessed significant advancements in recent years, mainly due to the integration of deep learning models, the availability of a vast amount of data, and large computational resources. These developments have led to highly accurate body tracking systems, which have direct applications in sports analysis and performance evaluation. This work analyzes the performance of six trackers: two point trackers and four joint trackers for biomechanical analysis in sprints. The proposed framework compares the results obtained from these pose trackers with the manual annotations of biomechanical experts for more than 5870 frames. The experimental framework employs forty sprints from five professional runners, focusing on three key angles in sprint biomechanics: trunk inclination, hip flex extension, and knee flex extension. We propose a post-processing module for outlier detection and fusion prediction in the joint angles. The experimental results demonstrate that using joint-based models yields root mean squared errors ranging from 11.41{\deg} to 4.37{\deg}. When integrated with the post-processing modules, these errors can be reduced to 6.99{\deg} and 3.88{\deg}, respectively. The experimental findings suggest that human pose tracking approaches can be valuable resources for the biomechanical analysis of running. However, there is still room for improvement in applications where high accuracy is required.
Abstract:3D face reconstruction (3DFR) algorithms are based on specific assumptions tailored to the limits and characteristics of the different application scenarios. In this study, we investigate how multiple state-of-the-art 3DFR algorithms can be used to generate a better representation of subjects, with the final goal of improving the performance of face recognition systems in challenging uncontrolled scenarios. We also explore how different parametric and non-parametric score-level fusion methods can exploit the unique strengths of multiple 3DFR algorithms to enhance biometric recognition robustness. With this goal, we propose a comprehensive analysis of several face recognition systems across diverse conditions, such as varying distances and camera setups, intra-dataset and cross-dataset, to assess the robustness of the proposed ensemble method. The results demonstrate that the distinct information provided by different 3DFR algorithms can alleviate the problem of generalizing over multiple application scenarios. In addition, the present study highlights the potential of advanced fusion strategies to enhance the reliability of 3DFR-based face recognition systems, providing the research community with key insights to exploit them in real-world applications effectively. Although the experiments are carried out in a specific face verification setup, our proposed fusion-based 3DFR methods may be applied to other tasks around face biometrics that are not strictly related to identity recognition.
Abstract:In an increasingly digitalized world, verifying the authenticity of ID documents has become a critical challenge for real-life applications such as digital banking, crypto-exchanges, renting, etc. This study focuses on the topic of fake ID detection, covering several limitations in the field. In particular, no publicly available data from real ID documents exists, and most studies rely on proprietary in-house databases that are not available due to privacy reasons. In order to shed some light on this critical challenge that makes difficult to advance in the field, we explore a trade-off between privacy (i.e., amount of sensitive data available) and performance, proposing a novel patch-wise approach for privacy-preserving fake ID detection. Our proposed approach explores how privacy can be enhanced through: i) two levels of anonymization for an ID document (i.e., fully- and pseudo-anonymized), and ii) different patch size configurations, varying the amount of sensitive data visible in the patch image. Also, state-of-the-art methods such as Vision Transformers and Foundation Models are considered in the analysis. The experimental framework shows that, on an unseen database (DLC-2021), our proposal achieves 13.91% and 0% EERs at patch and ID document level, showing a good generalization to other databases. In addition to this exploration, another key contribution of our study is the release of the first publicly available database that contains 48,400 patches from both real and fake ID documents, along with the experimental framework and models, which will be available in our GitHub.
Abstract:Automatic dietary assessment based on food images remains a challenge, requiring precise food detection, segmentation, and classification. Vision-Language Models (VLMs) offer new possibilities by integrating visual and textual reasoning. In this study, we evaluate six state-of-the-art VLMs (ChatGPT, Gemini, Claude, Moondream, DeepSeek, and LLaVA), analyzing their capabilities in food recognition at different levels. For the experimental framework, we introduce the FoodNExTDB, a unique food image database that contains 9,263 expert-labeled images across 10 categories (e.g., "protein source"), 62 subcategories (e.g., "poultry"), and 9 cooking styles (e.g., "grilled"). In total, FoodNExTDB includes 50k nutritional labels generated by seven experts who manually annotated all images in the database. Also, we propose a novel evaluation metric, Expert-Weighted Recall (EWR), that accounts for the inter-annotator variability. Results show that closed-source models outperform open-source ones, achieving over 90% EWR in recognizing food products in images containing a single product. Despite their potential, current VLMs face challenges in fine-grained food recognition, particularly in distinguishing subtle differences in cooking styles and visually similar food items, which limits their reliability for automatic dietary assessment. The FoodNExTDB database is publicly available at https://github.com/AI4Food/FoodNExtDB.
Abstract:We present the Membership Inference Test Demonstrator, to emphasize the need for more transparent machine learning training processes. MINT is a technique for experimentally determining whether certain data has been used during the training of machine learning models. We conduct experiments with popular face recognition models and 5 public databases containing over 22M images. Promising results, up to 89% accuracy are achieved, suggesting that it is possible to recognize if an AI model has been trained with specific data. Finally, we present a MINT platform as demonstrator of this technology aimed to promote transparency in AI training.
Abstract:This work adapts and studies the gradient-based Membership Inference Test (gMINT) to the classification of text based on LLMs. MINT is a general approach intended to determine if given data was used for training machine learning models, and this work focuses on its application to the domain of Natural Language Processing. Using gradient-based analysis, the MINT model identifies whether particular data samples were included during the language model training phase, addressing growing concerns about data privacy in machine learning. The method was evaluated in seven Transformer-based models and six datasets comprising over 2.5 million sentences, focusing on text classification tasks. Experimental results demonstrate MINTs robustness, achieving AUC scores between 85% and 99%, depending on data size and model architecture. These findings highlight MINTs potential as a scalable and reliable tool for auditing machine learning models, ensuring transparency, safeguarding sensitive data, and fostering ethical compliance in the deployment of AI/NLP technologies.
Abstract:This article presents the Keystroke Verification Challenge - onGoing (KVC-onGoing), on which researchers can easily benchmark their systems in a common platform using large-scale public databases, the Aalto University Keystroke databases, and a standard experimental protocol. The keystroke data consist of tweet-long sequences of variable transcript text from over 185,000 subjects, acquired through desktop and mobile keyboards simulating real-life conditions. The results on the evaluation set of KVC-onGoing have proved the high discriminative power of keystroke dynamics, reaching values as low as 3.33% of Equal Error Rate (EER) and 11.96% of False Non-Match Rate (FNMR) @1% False Match Rate (FMR) in the desktop scenario, and 3.61% of EER and 17.44% of FNMR @1% at FMR in the mobile scenario, significantly improving previous state-of-the-art results. Concerning demographic fairness, the analyzed scores reflect the subjects' age and gender to various extents, not negligible in a few cases. The framework runs on CodaLab.
Abstract:Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.