Abstract:Accurate detection and classification of diverse door types in floor plans drawings is critical for multiple applications, such as building compliance checking, and indoor scene understanding. Despite their importance, publicly available datasets specifically designed for fine-grained multi-class door detection remain scarce. In this work, we present a semi-automated pipeline that leverages a state-of-the-art object detector and a large language model (LLM) to construct a multi-class door detection dataset with minimal manual effort. Doors are first detected as a unified category using a deep object detection model. Next, an LLM classifies each detected instance based on its visual and contextual features. Finally, a human-in-the-loop stage ensures high-quality labels and bounding boxes. Our method significantly reduces annotation cost while producing a dataset suitable for benchmarking neural models in floor plan analysis. This work demonstrates the potential of combining deep learning and multimodal reasoning for efficient dataset construction in complex real-world domains.
Abstract:Vision-Language Models (VLMs) are increasingly used as perceptual modules for visual content reasoning, including through captioning and DeepFake detection. In this work, we expose a critical vulnerability of VLMs when exposed to subtle, structured perturbations in the frequency domain. Specifically, we highlight how these feature transformations undermine authenticity/DeepFake detection and automated image captioning tasks. We design targeted image transformations, operating in the frequency domain to systematically adjust VLM outputs when exposed to frequency-perturbed real and synthetic images. We demonstrate that the perturbation injection method generalizes across five state-of-the-art VLMs which includes different-parameter Qwen2/2.5 and BLIP models. Experimenting across ten real and generated image datasets reveals that VLM judgments are sensitive to frequency-based cues and may not wholly align with semantic content. Crucially, we show that visually-imperceptible spatial frequency transformations expose the fragility of VLMs deployed for automated image captioning and authenticity detection tasks. Our findings under realistic, black-box constraints challenge the reliability of VLMs, underscoring the need for robust multimodal perception systems.
Abstract:Despite the impressive performance of generative Diffusion Models (DMs), their internal working is still not well understood, which is potentially problematic. This paper focuses on exploring the important notion of bias-variance tradeoff in diffusion models. Providing a systematic foundation for this exploration, it establishes that at one extreme the diffusion models may amplify the inherent bias in the training data and, on the other, they may compromise the presumed privacy of the training samples. Our exploration aligns with the memorization-generalization understanding of the generative models, but it also expands further along this spectrum beyond ``generalization'', revealing the risk of bias amplification in deeper models. Building on the insights, we also introduce a training-free method to improve output quality in text-to-image and image-to-image generation. By progressively encouraging temporary high variance in the generation process with partial bypassing of the mid-block's contribution in the denoising process of DMs, our method consistently improves generative image quality with zero training cost. Our claims are validated both theoretically and empirically.
Abstract:Large Language Models (LLMs) have seen rapid advancements in recent years, with models like ChatGPT and DeepSeek, showcasing their remarkable capabilities across diverse domains. While substantial research has been conducted on LLMs in various fields, a comprehensive review focusing on their integration with Computer-Aided Design (CAD) remains notably absent. CAD is the industry standard for 3D modeling and plays a vital role in the design and development of products across different industries. As the complexity of modern designs increases, the potential for LLMs to enhance and streamline CAD workflows presents an exciting frontier. This article presents the first systematic survey exploring the intersection of LLMs and CAD. We begin by outlining the industrial significance of CAD, highlighting the need for AI-driven innovation. Next, we provide a detailed overview of the foundation of LLMs. We also examine both closed-source LLMs as well as publicly available models. The core of this review focuses on the various applications of LLMs in CAD, providing a taxonomy of six key areas where these models are making considerable impact. Finally, we propose several promising future directions for further advancements, which offer vast opportunities for innovation and are poised to shape the future of CAD technology. Github: https://github.com/lichengzhanguom/LLMs-CAD-Survey-Taxonomy
Abstract:Despite their impressive performance, deep visual models are susceptible to transferable black-box adversarial attacks. Principally, these attacks craft perturbations in a target model-agnostic manner. However, surprisingly, we find that existing methods in this domain inadvertently take help from various priors that violate the black-box assumption such as the availability of the dataset used to train the target model, and the knowledge of the number of classes in the target model. Consequently, the literature fails to articulate the true potency of transferable black-box attacks. We provide an empirical study of these biases and propose a framework that aids in a prior-free transparent study of this paradigm. Using our framework, we analyze the role of prior knowledge of the target model data and number of classes in attack performance. We also provide several interesting insights based on our analysis, and demonstrate that priors cause overestimation in transferability scores. Finally, we extend our framework to query-based attacks. This extension inspires a novel image-blending technique to prepare data for effective surrogate model training.
Abstract:Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples for in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods.
Abstract:We propose GO-N3RDet, a scene-geometry optimized multi-view 3D object detector enhanced by neural radiance fields. The key to accurate 3D object detection is in effective voxel representation. However, due to occlusion and lack of 3D information, constructing 3D features from multi-view 2D images is challenging. Addressing that, we introduce a unique 3D positional information embedded voxel optimization mechanism to fuse multi-view features. To prioritize neural field reconstruction in object regions, we also devise a double importance sampling scheme for the NeRF branch of our detector. We additionally propose an opacity optimization module for precise voxel opacity prediction by enforcing multi-view consistency constraints. Moreover, to further improve voxel density consistency across multiple perspectives, we incorporate ray distance as a weighting factor to minimize cumulative ray errors. Our unique modules synergetically form an end-to-end neural model that establishes new state-of-the-art in NeRF-based multi-view 3D detection, verified with extensive experiments on ScanNet and ARKITScenes. Code will be available at https://github.com/ZechuanLi/GO-N3RDet.
Abstract:We investigate bias trends in text-to-image generative models over time, focusing on the increasing availability of models through open platforms like Hugging Face. While these platforms democratize AI, they also facilitate the spread of inherently biased models, often shaped by task-specific fine-tuning. Ensuring ethical and transparent AI deployment requires robust evaluation frameworks and quantifiable bias metrics. To this end, we assess bias across three key dimensions: (i) distribution bias, (ii) generative hallucination, and (iii) generative miss-rate. Analyzing over 100 models, we reveal how bias patterns evolve over time and across generative tasks. Our findings indicate that artistic and style-transferred models exhibit significant bias, whereas foundation models, benefiting from broader training distributions, are becoming progressively less biased. By identifying these systemic trends, we contribute a large-scale evaluation corpus to inform bias research and mitigation strategies, fostering more responsible AI development. Keywords: Bias, Ethical AI, Text-to-Image, Generative Models, Open-Source Models
Abstract:High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns, including intellectual property protection and the misuse of synthetic media. To address these challenges, we propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source. Our multi-stage watermarking technique involves embedding: (i) a fixed watermark that is localized in the diffusion model's learned noise distribution and, (ii) a human-imperceptible, dynamic watermark in generates images, leveraging a fine-tuned decoder. By leveraging the Structural Similarity Index Measure (SSIM) and cosine similarity, we adapt the watermark's shape and color to the generated content while maintaining robustness. We demonstrate that our method enables reliable source verification through watermark classification, even when the dynamic watermark is adjusted for content-specific variations. Source model verification is enabled through watermark classification. o support further research, we generate a dataset of watermarked images and introduce a methodology to evaluate the statistical impact of watermarking on generated content.Additionally, we rigorously test our framework against various attack scenarios, demonstrating its robustness and minimal impact on image quality. Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
Abstract:Deepfake videos are causing growing concerns among communities due to their ever-increasing realism. Naturally, automated detection of forged Deepfake videos is attracting a proportional amount of interest of researchers. Current methods for detecting forged videos mainly rely on global frame features and under-utilize the spatio-temporal inconsistencies found in the manipulated videos. Moreover, they fail to attend to manipulation-specific subtle and well-localized pattern variations along both spatial and temporal dimensions. Addressing these gaps, we propose a neural Deepfake detector that focuses on the localized manipulative signatures of the forged videos at individual frame level as well as frame sequence level. Using a ResNet backbone, it strengthens the shallow frame-level feature learning with a spatial attention mechanism. The spatial stream of the model is further helped by fusing texture enhanced shallow features with the deeper features. Simultaneously, the model processes frame sequences with a distance attention mechanism that further allows fusion of temporal attention maps with the learned features at the deeper layers. The overall model is trained to detect forged content as a classifier. We evaluate our method on two popular large data sets and achieve significant performance over the state-of-the-art methods.Moreover, our technique also provides memory and computational advantages over the competitive techniques.