INRIA Grenoble Rhône-Alpes / LJK Laboratoire Jean Kuntzmann
Abstract:Videos contain rich spatio-temporal information. Traditional methods for extracting motion, used in tasks such as action recognition, often rely on visual contents rather than precise motion features. This phenomenon is referred to as 'blind motion extraction' behavior, which proves inefficient in capturing motions of interest due to a lack of motion-guided cues. Recently, attention mechanisms have enhanced many computer vision tasks by effectively highlighting salient visual areas. Inspired by this, we propose using a modified Sigmoid function with learnable slope and shift parameters as an attention mechanism to activate and modulate motion signals derived from frame differencing maps. This approach generates a sequence of attention maps that enhance the processing of motion-related video content. To ensure temporally continuity and smoothness of the attention maps, we apply pair-wise temporal attention variation regularization to remove unwanted motions (e.g., noise) while preserving important ones. We then perform Hadamard product between each pair of attention maps and the original video frames to highlight the evolving motions of interest over time. These highlighted motions, termed video motion prompts, are subsequently used as inputs to the model instead of the original video frames. We formalize this process as a motion prompt layer and incorporate the regularization term into the loss function to learn better motion prompts. This layer serves as an adapter between the model and the video data, bridging the gap between traditional 'blind motion extraction' and the extraction of relevant motions of interest.
Abstract:Generative Adversarial Networks (GANs) significantly advanced image generation but their performance heavily depends on abundant training data. In scenarios with limited data, GANs often struggle with discriminator overfitting and unstable training. Batch Normalization (BN), despite being known for enhancing generalization and training stability, has rarely been used in the discriminator of Data-Efficient GANs. Our work addresses this gap by identifying a critical flaw in BN: the tendency for gradient explosion during the centering and scaling steps. To tackle this issue, we present CHAIN (lipsCHitz continuity constrAIned Normalization), which replaces the conventional centering step with zero-mean regularization and integrates a Lipschitz continuity constraint in the scaling step. CHAIN further enhances GAN training by adaptively interpolating the normalized and unnormalized features, effectively avoiding discriminator overfitting. Our theoretical analyses firmly establishes CHAIN's effectiveness in reducing gradients in latent features and weights, improving stability and generalization in GAN training. Empirical evidence supports our theory. CHAIN achieves state-of-the-art results in data-limited scenarios on CIFAR-10/100, ImageNet, five low-shot and seven high-resolution few-shot image datasets. Code: https://github.com/MaxwellYaoNi/CHAIN
Abstract:Existing eye fixation prediction methods perform the mapping from input images to the corresponding dense fixation maps generated from raw fixation points. However, due to the stochastic nature of human fixation, the generated dense fixation maps may be a less-than-ideal representation of human fixation. To provide a robust fixation model, we introduce Gaussian Representation for eye fixation modeling. Specifically, we propose to model the eye fixation map as a mixture of probability distributions, namely a Gaussian Mixture Model. In this new representation, we use several Gaussian distribution components as an alternative to the provided fixation map, which makes the model more robust to the randomness of fixation. Meanwhile, we design our framework upon some lightweight backbones to achieve real-time fixation prediction. Experimental results on three public fixation prediction datasets (SALICON, MIT1003, TORONTO) demonstrate that our method is fast and effective.
Abstract:Video sequences exhibit significant nuisance variations (undesired effects) of speed of actions, temporal locations, and subjects' poses, leading to temporal-viewpoint misalignment when comparing two sets of frames or evaluating the similarity of two sequences. Thus, we propose Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE) for sequence pairs. In particular, we focus on 3D skeleton sequences whose camera and subjects' poses can be easily manipulated in 3D. We evaluate JEANIE on skeletal Few-shot Action Recognition (FSAR), where matching well temporal blocks (temporal chunks that make up a sequence) of support-query sequence pairs (by factoring out nuisance variations) is essential due to limited samples of novel classes. Given a query sequence, we create its several views by simulating several camera locations. For a support sequence, we match it with view-simulated query sequences, as in the popular Dynamic Time Warping (DTW). Specifically, each support temporal block can be matched to the query temporal block with the same or adjacent (next) temporal index, and adjacent camera views to achieve joint local temporal-viewpoint warping. JEANIE selects the smallest distance among matching paths with different temporal-viewpoint warping patterns, an advantage over DTW which only performs temporal alignment. We also propose an unsupervised FSAR akin to clustering of sequences with JEANIE as a distance measure. JEANIE achieves state-of-the-art results on NTU-60, NTU-120, Kinetics-skeleton and UWA3D Multiview Activity II on supervised and unsupervised FSAR, and their meta-learning inspired fusion.
Abstract:Traditional shape descriptors have been gradually replaced by convolutional neural networks due to their superior performance in feature extraction and classification. The state-of-the-art methods recognize object shapes via image reconstruction or pixel classification. However , these methods are biased toward texture information and overlook the essential shape descriptions, thus, they fail to generalize to unseen shapes. We are the first to propose a fewshot shape descriptor (FSSD) to recognize object shapes given only one or a few samples. We employ an embedding module for FSSD to extract transformation-invariant shape features. Secondly, we develop a dual attention mechanism to decompose and reconstruct the shape features via learnable shape primitives. In this way, any shape can be formed through a finite set basis, and the learned representation model is highly interpretable and extendable to unseen shapes. Thirdly, we propose a decoding module to include the supervision of shape masks and edges and align the original and reconstructed shape features, enforcing the learned features to be more shape-aware. Lastly, all the proposed modules are assembled into a few-shot shape recognition scheme. Experiments on five datasets show that our FSSD significantly improves the shape classification compared to the state-of-the-art under the few-shot setting.
Abstract:Masked Image Modeling (MIM) is a powerful self-supervised strategy for visual pre-training without the use of labels. MIM applies random crops to input images, processes them with an encoder, and then recovers the masked inputs with a decoder, which encourages the network to capture and learn structural information about objects and scenes. The intermediate feature representations obtained from MIM are suitable for fine-tuning on downstream tasks. In this paper, we propose an Image Modeling framework based on random orthogonal projection instead of binary masking as in MIM. Our proposed Random Orthogonal Projection Image Modeling (ROPIM) reduces spatially-wise token information under guaranteed bound on the noise variance and can be considered as masking entire spatial image area under locally varying masking degrees. Since ROPIM uses a random subspace for the projection that realizes the masking step, the readily available complement of the subspace can be used during unmasking to promote recovery of removed information. In this paper, we show that using random orthogonal projection leads to superior performance compared to crop-based masking. We demonstrate state-of-the-art results on several popular benchmarks.
Abstract:Learning good self-supervised graph representations that are beneficial to downstream tasks is challenging. Among a variety of methods, contrastive learning enjoys competitive performance. The embeddings of contrastive learning are arranged on a hypersphere that enables the Cosine distance measurement in the Euclidean space. However, the underlying structure of many domains such as graphs exhibits highly non-Euclidean latent geometry. To this end, we propose a novel contrastive learning framework to learn high-quality graph embedding. Specifically, we design the alignment metric that effectively captures the hierarchical data-invariant information, as well as we propose a substitute of uniformity metric to prevent the so-called dimensional collapse. We show that in the hyperbolic space one has to address the leaf- and height-level uniformity which are related to properties of trees, whereas in the ambient space of the hyperbolic manifold, these notions translate into imposing an isotropic ring density towards boundaries of Poincar\'e ball. This ring density can be easily imposed by promoting the isotropic feature distribution on the tangent space of manifold. In the experiments, we demonstrate the efficacy of our proposed method across different hyperbolic graph embedding techniques in both supervised and self-supervised learning settings.
Abstract:Various research studies indicate that action recognition performance highly depends on the types of motions being extracted and how accurate the human actions are represented. In this paper, we investigate different optical flow, and features extracted from these optical flow that capturing both short-term and long-term motion dynamics. We perform power normalization on the magnitude component of optical flow for flow dynamics correction to boost subtle or dampen sudden motions. We show that existing action recognition models which rely on optical flow are able to get performance boosted with our corrected optical flow. To further improve performance, we integrate our corrected flow dynamics into popular models through a simple hallucination step by selecting only the best performing optical flow features, and we show that by 'translating' the CNN feature maps into these optical flow features with different scales of motions leads to the new state-of-the-art performance on several benchmarks including HMDB-51, YUP++, fine-grained action recognition on MPII Cooking Activities, and large-scale Charades.
Abstract:In contrastive learning, two views of an original image generated by different augmentations are considered as a positive pair whose similarity is required to be high. Moreover, two views of two different images are considered as a negative pair, and their similarity is encouraged to be low. Normally, a single similarity measure given by a single projection head is used to evaluate positive and negative sample pairs, respectively. However, due to the various augmentation strategies and varying intra-sample similarity, augmented views from the same image are often not similar. Moreover, due to inter-sample similarity, augmented views of two different images may be more similar than augmented views from the same image. As such, enforcing a high similarity for positive pairs and a low similarity for negative pairs may not always be achievable, and in the case of some pairs, forcing so may be detrimental to the performance. To address this issue, we propose to use multiple projection heads, each producing a separate set of features. Our loss function for pre-training emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. The loss contains the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature that is regularized to prevent ill solutions. Our adaptive multi-head contrastive learning (AMCL) can be applied to and experimentally improves several popular contrastive learning methods such as SimCLR, MoCo and Barlow Twins. Such improvement is consistent under various backbones and linear probing epoches and is more significant when multiple augmentation methods are used.
Abstract:Deep learning models suffer from catastrophic forgetting when being fine-tuned with samples of new classes. This issue becomes even more pronounced when faced with the domain shift between training and testing data. In this paper, we study the critical and less explored Domain-Generalized Class-Incremental Learning (DGCIL). We design a DGCIL approach that remembers old classes, adapts to new classes, and can classify reliably objects from unseen domains. Specifically, our loss formulation maintains classification boundaries and suppresses the domain-specific information of each class. With no old exemplars stored, we use knowledge distillation and estimate old class prototype drift as incremental training advances. Our prototype representations are based on multivariate Normal distributions whose means and covariances are constantly adapted to changing model features to represent old classes well by adapting to the feature space drift. For old classes, we sample pseudo-features from the adapted Normal distributions with the help of Cholesky decomposition. In contrast to previous pseudo-feature sampling strategies that rely solely on average mean prototypes, our method excels at capturing varying semantic information. Experiments on several benchmarks validate our claims.