Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.




Recent query-based 3D object detection methods using camera and LiDAR inputs have shown strong performance, but existing query initialization strategies,such as random sampling or BEV heatmap-based sampling, often result in inefficient query usage and reduced accuracy, particularly for occluded or crowded objects. To address this limitation, we propose ALIGN (Advanced query initialization with LiDAR and Image GuidaNce), a novel approach for occlusion-robust, object-aware query initialization. Our model consists of three key components: (i) Occlusion-aware Center Estimation (OCE), which integrates LiDAR geometry and image semantics to estimate object centers accurately (ii) Adaptive Neighbor Sampling (ANS), which generates object candidates from LiDAR clustering and supplements each object by sampling spatially and semantically aligned points around it and (iii) Dynamic Query Balancing (DQB), which adaptively balances queries between foreground and background regions. Our extensive experiments on the nuScenes benchmark demonstrate that ALIGN consistently improves performance across multiple state-of-the-art detectors, achieving gains of up to +0.9 mAP and +1.2 NDS, particularly in challenging scenes with occlusions or dense crowds. Our code will be publicly available upon publication.
Intelligent image editing increasingly relies on advances in computer vision, multimodal reasoning, and generative modeling. While vision-language models (VLMs) and diffusion models enable guided visual manipulation, existing work rarely ensures that inserted objects are \emph{contextually appropriate}. We introduce two new tasks for advertising and digital media: (1) \emph{context-aware object insertion}, which requires predicting suitable object categories, generating them, and placing them plausibly within the scene; and (2) \emph{sponsor-product logo augmentation}, which involves detecting products and inserting correct brand logos, even when items are unbranded or incorrectly branded. To support these tasks, we build two new datasets with category annotations, placement regions, and sponsor-product labels.
Hyperspectral images with high spectral resolution provide new insights into recognizing subtle differences in similar substances. However, object detection in hyperspectral images faces significant challenges in intra- and inter-class similarity due to the spatial differences in hyperspectral inter-bands and unavoidable interferences, e.g., sensor noises and illumination. To alleviate the hyperspectral inter-bands inconsistencies and redundancy, we propose a novel network termed \textbf{S}pectral \textbf{D}iscrepancy and \textbf{C}ross-\textbf{M}odal semantic consistency learning (SDCM), which facilitates the extraction of consistent information across a wide range of hyperspectral bands while utilizing the spectral dimension to pinpoint regions of interest. Specifically, we leverage a semantic consistency learning (SCL) module that utilizes inter-band contextual cues to diminish the heterogeneity of information among bands, yielding highly coherent spectral dimension representations. On the other hand, we incorporate a spectral gated generator (SGG) into the framework that filters out the redundant data inherent in hyperspectral information based on the importance of the bands. Then, we design the spectral discrepancy aware (SDA) module to enrich the semantic representation of high-level information by extracting pixel-level spectral features. Extensive experiments on two hyperspectral datasets demonstrate that our proposed method achieves state-of-the-art performance when compared with other ones.
Large language models(LLMs) excel at text generation and knowledge question-answering tasks, but they are prone to generating hallucinated content, severely limiting their application in high-risk domains. Current hallucination detection methods based on uncertainty estimation and external knowledge retrieval suffer from the limitation that they still produce erroneous content at high confidence levels and rely heavily on retrieval efficiency and knowledge coverage. In contrast, probe methods that leverage the model's hidden-layer states offer real-time and lightweight advantages. However, traditional linear probes struggle to capture nonlinear structures in deep semantic spaces.To overcome these limitations, we propose a neural network-based framework for token-level hallucination detection. By freezing language model parameters, we employ lightweight MLP probes to perform nonlinear modeling of high-level hidden states. A multi-objective joint loss function is designed to enhance detection stability and semantic disambiguity. Additionally, we establish a layer position-probe performance response model, using Bayesian optimization to automatically search for optimal probe insertion layers and achieve superior training results.Experimental results on LongFact, HealthBench, and TriviaQA demonstrate that MLP probes significantly outperform state-of-the-art methods in accuracy, recall, and detection capability under low false-positive conditions.
With the accelerating pace of digital transformation and the widespread adoption of online platforms, both social and technical concerns regarding dark patterns-user interface designs that undermine users' ability to make informed and rational choices-have become increasingly prominent. As corporate online platforms grow more sophisticated in their design strategies, there is a pressing need for proactive and real-time detection technologies that go beyond the predominantly reactive approaches employed by regulatory authorities. In this paper, we propose a visual dark pattern detection framework that improves both detection accuracy and real-time performance. To this end, we constructed a proprietary visual object detection dataset by manually collecting 4,066 UI/UX screenshots containing dark patterns from 194 websites across six major industrial sectors in South Korea and abroad. The collected images were annotated with five representative UI components commonly associated with dark patterns: Button, Checkbox, Input Field, Pop-up, and QR Code. This dataset has been publicly released to support further research and development in the field. To enable real-time detection, this study adopted the YOLOv12x object detection model and applied transfer learning to optimize its performance for visual dark pattern recognition. Experimental results demonstrate that the proposed approach achieves a high detection accuracy of 92.8% in terms of mAP@50, while maintaining a real-time inference speed of 40.5 frames per second (FPS), confirming its effectiveness for practical deployment in online environments. Furthermore, to facilitate future research and contribute to technological advancements, the dataset constructed in this study has been made publicly available at https://github.com/B4E2/B4E2-DarkPattern-YOLO-DataSet.
Object detection in aerial imagery is a critical task in applications such as UAV reconnaissance. Although existing methods have extensively explored feature interaction between different modalities, they commonly rely on simple fusion strategies for feature aggregation. This introduces two critical flaws: it is prone to cross-modal noise and disrupts the hierarchical structure of the feature pyramid, thereby impairing the fine-grained detection of small objects. To address this challenge, we propose the Pyramidal Adaptive Cross-Gating Network (PACGNet), an architecture designed to perform deep fusion within the backbone. To this end, we design two core components: the Symmetrical Cross-Gating (SCG) module and the Pyramidal Feature-aware Multimodal Gating (PFMG) module. The SCG module employs a bidirectional, symmetrical "horizontal" gating mechanism to selectively absorb complementary information, suppress noise, and preserve the semantic integrity of each modality. The PFMG module reconstructs the feature hierarchy via a progressive hierarchical gating mechanism. This leverages the detailed features from a preceding, higher-resolution level to guide the fusion at the current, lower-resolution level, effectively preserving fine-grained details as features propagate. Through evaluations conducted on the DroneVehicle and VEDAI datasets, our PACGNet sets a new state-of-the-art benchmark, with mAP50 scores reaching 81.7% and 82.1% respectively.
Handwritten text recognition and optical character recognition solutions show excellent results with processing data of modern era, but efficiency drops with Latin documents of medieval times. This paper presents a deep learning method to extract text information from handwritten Latin-language documents of the 9th to 11th centuries. The approach takes into account the properties inherent in medieval documents. The paper provides a brief introduction to the field of historical document transcription, a first-sight analysis of the raw data, and the related works and studies. The paper presents the steps of dataset development for further training of the models. The explanatory data analysis of the processed data is provided as well. The paper explains the pipeline of deep learning models to extract text information from the document images, from detecting objects to word recognition using classification models and embedding word images. The paper reports the following results: recall, precision, F1 score, intersection over union, confusion matrix, and mean string distance. The plots of the metrics are also included. The implementation is published on the GitHub repository.




Open-vocabulary 3D object detection methods are able to localize 3D boxes of classes unseen during training. Despite the name, existing methods rely on user-specified classes both at training and inference. We propose to study Auto-Vocabulary 3D Object Detection (AV3DOD), where the classes are automatically generated for the detected objects without any user input. To this end, we introduce Semantic Score (SS) to evaluate the quality of the generated class names. We then develop a novel framework, AV3DOD, which leverages 2D vision-language models (VLMs) to generate rich semantic candidates through image captioning, pseudo 3D box generation, and feature-space semantics expansion. AV3DOD achieves the state-of-the-art (SOTA) performance on both localization (mAP) and semantic quality (SS) on the ScanNetV2 and SUNRGB-D datasets. Notably, it surpasses the SOTA, CoDA, by 3.48 overall mAP and attains a 24.5% relative improvement in SS on ScanNetV2.
Mycetoma is a neglected tropical disease caused by fungi or bacteria leading to severe tissue damage and disabilities. It affects poor and rural communities and presents medical challenges and socioeconomic burdens on patients and healthcare systems in endemic regions worldwide. Mycetoma diagnosis is a major challenge in mycetoma management, particularly in low-resource settings where expert pathologists are limited. To address this challenge, this paper presents an overview of the Mycetoma MicroImage: Detect and Classify Challenge (mAIcetoma) which was organized to advance mycetoma diagnosis through AI solutions. mAIcetoma focused on developing automated models for segmenting mycetoma grains and classifying mycetoma types from histopathological images. The challenge attracted the attention of several teams worldwide to participate and five finalist teams fulfilled the challenge objectives. The teams proposed various deep learning architectures for the ultimate goal of this challenge. Mycetoma database (MyData) was provided to participants as a standardized dataset to run the proposed models. Those models were evaluated using evaluation metrics. Results showed that all the models achieved high segmentation accuracy, emphasizing the necessitate of grain detection as a critical step in mycetoma diagnosis. In addition, the top-performing models show a significant performance in classifying mycetoma types.
This work leverages the continuous sweeping motion of LiDAR scanning to concentrate object detection efforts on specific regions that receive a change in point data from one frame to another. We achieve this by using a sliding time window with short strides and consider the temporal dimension by storing convolution results between passes. This allows us to ignore unchanged regions, significantly reducing the number of convolution operations per forward pass without sacrificing accuracy. This data reuse scheme introduces extreme sparsity to detection data. To exploit this sparsity, we extend our previous work on scatter-based convolutions to allow for data reuse, and as such propose Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling (SSCATeR). This operation treats incoming LiDAR data as a continuous stream and acts only on the changing parts of the point cloud. By doing so, we achieve the same results with as much as a 6.61-fold reduction in processing time. Our test results show that the feature maps output by our method are identical to those produced by traditional sparse convolution techniques, whilst greatly increasing the computational efficiency of the network.