Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Large-scale vision-language models such as CLIP achieve strong zero-shot recognition but struggle with classes that are rarely seen during pretraining, including newly emerging entities and culturally specific categories. We introduce LiteEmbed, a lightweight framework for few-shot personalization of CLIP that enables new classes to be added without retraining its encoders. LiteEmbed performs subspace-guided optimization of text embeddings within CLIP's vocabulary, leveraging a PCA-based decomposition that disentangles coarse semantic directions from fine-grained variations. Two complementary objectives, coarse alignment and fine separation, jointly preserve global semantic consistency while enhancing discriminability among visually similar classes. Once optimized, the embeddings are plug-and-play, seamlessly substituting CLIP's original text features across classification, retrieval, segmentation, and detection tasks. Extensive experiments demonstrate substantial gains over prior methods, establishing LiteEmbed as an effective approach for adapting CLIP to underrepresented, rare, or unseen classes.
Anomalous sound detection (ASD) typically involves self-supervised proxy tasks to learn feature representations from normal sound data, owing to the scarcity of anomalous samples. In ASD research, proxy tasks such as AutoEncoders operate under the explicit assumption that models trained on normal data will increase the reconstruction errors related to anomalies. A natural extension suggests that improved proxy task performance should improve ASD capability; however, this relationship has received little systematic attention. This study addresses this research gap by quantitatively analyzing the relationship between proxy task metrics and ASD performance across five configurations, namely, AutoEncoders, classification, source separation, contrastive learning, and pre-trained models. We evaluate the learned representations using linear probe (linear separability) and Mahalanobis distance (distributional compactness). Our experiments reveal that strong proxy performance does not necessarily improve anomalous sound detection performance. Specifically, classification tasks experience performance saturation owing to insufficient task difficulty, whereas contrastive learning fails to learn meaningful features owing to limited data diversity. Notably, source separation is the only task demonstrating a strong positive correlation, such that improved separation consistently improves anomaly detection. Based on these findings, we highlight the critical importance of task difficulty and objective alignment. Finally, we propose a three-stage alignment verification protocol to guide the design of highly effective proxy tasks for ASD systems.
The use of aerial drones for commercial and defense applications has benefited in many ways and is therefore utilized in several different application domains. However, they are also increasingly used for targeted attacks, posing a significant safety challenge and necessitating the development of drone detection systems. Vision-based drone detection systems currently have an accuracy limitation and struggle to distinguish between drones and birds, particularly when the birds are small in size. This research work proposes a novel YOLOBirDrone architecture that improves the detection and classification accuracy of birds and drones. YOLOBirDrone has different components, including an adaptive and extended layer aggregation (AELAN), a multi-scale progressive dual attention module (MPDA), and a reverse MPDA (RMPDA) to preserve shape information and enrich features with local and global spatial and channel information. A large-scale dataset, BirDrone, is also introduced in this article, which includes small and challenging objects for robust aerial object identification. Experimental results demonstrate an improvement in performance metrics through the proposed YOLOBirDrone architecture compared to other state-of-the-art algorithms, with detection accuracy reaching approximately 85% across various scenarios.
In this article, we propose a new keyframe-based mapping system. The proposed method updates local Normal Distribution Transform maps (NDT) using data from an RGB-D sensor. The cells of the NDT are stored in 2D view-dependent structures to better utilize the properties and uncertainty model of RGB-D cameras. This method naturally represents an object closer to the camera origin with higher precision. The local maps are stored in the pose graph which allows correcting global map after loop closure detection. We also propose a procedure that allows merging and filtering local maps to obtain a global map of the environment. Finally, we compare our method with Octomap and NDT-OM and provide example applications of the proposed mapping method.
Paleography is the study of ancient and historical handwriting, its key objectives include the dating of manuscripts and understanding the evolution of writing. Estimating when a document was written and tracing the development of scripts and writing styles can be aided by identifying the individual scribes who contributed to a medieval manuscript. Although digital technologies have made significant progress in this field, the general problem remains unsolved and continues to pose open challenges. ... We previously proposed an approach focused on identifying specific letters or abbreviations that characterize each writer. In that study, we considered the letter "a", as it was widely present on all pages of text and highly distinctive, according to the suggestions of expert paleographers. We used template matching techniques to detect the occurrences of the character "a" on each page and the convolutional neural network (CNN) to attribute each instance to the correct scribe. Moving from the interesting results achieved from this previous system and being aware of the limitations of the template matching technique, which requires an appropriate threshold to work, we decided to experiment in the same framework with the use of the YOLO object detection model to identify the scribe who contributed to the writing of different medieval books. We considered the fifth version of YOLO to implement the YOLO object detection model, which completely substituted the template matching and CNN used in the previous work. The experimental results demonstrate that YOLO effectively extracts a greater number of letters considered, leading to a more accurate second-stage classification. Furthermore, the YOLO confidence score provides a foundation for developing a system that applies a rejection threshold, enabling reliable writer identification even in unseen manuscripts.
Autonomous Vehicle (AV) technology has been heavily researched and sought after, yet there are no SAE Level 5 AVs available today in the marketplace. We contend that over-reliance on machine learning technology is the main reason. Use of automated commonsense reasoning technology, we believe, can help achieve SAE Level 5 autonomy. In this paper, we show how automated common- sense reasoning technology can be deployed in situations where there are not enough data samples available to train a deep learning-based AV model that can handle certain abnormal road scenarios. Specifically, we consider two situations where (i) a traffic signal is malfunctioning at an intersection and (ii) all the cars ahead are slowing down and steering away due to an unexpected obstruction (e.g., animals on the road). We show that in such situations, our commonsense reasoning-based solution accurately detects traffic light colors and obstacles not correctly captured by the AV's perception model. We also provide a pathway for efficiently invoking commonsense reasoning by measuring uncertainty in the computer vision model and using commonsense reasoning to handle uncertain sce- narios. We describe our experiments conducted using the CARLA simulator and the results obtained. The main contribution of our research is to show that automated commonsense reasoning effectively corrects AV-based object detection misclassifications and that hybrid models provide an effective pathway to improving AV perception.
Detecting tiny objects plays a vital role in remote sensing intelligent interpretation, as these objects often carry critical information for downstream applications. However, due to the extremely limited pixel information and significant variations in object density, mainstream Transformer-based detectors often suffer from slow convergence and inaccurate query-object matching. To address these challenges, we propose D$^3$R-DETR, a novel DETR-based detector with Dual-Domain Density Refinement. By fusing spatial and frequency domain information, our method refines low-level feature maps and utilizes their rich details to predict more accurate object density map, thereby guiding the model to precisely localize tiny objects. Extensive experiments on the AI-TOD-v2 dataset demonstrate that D$^3$R-DETR outperforms existing state-of-the-art detectors for tiny object detection.
Unlabeled LiDAR logs, in autonomous driving applications, are inherently a gold mine of dense 3D geometry hiding in plain sight - yet they are almost useless without human labels, highlighting a dominant cost barrier for autonomous-perception research. In this work we tackle this bottleneck by leveraging temporal-geometric consistency across LiDAR sweeps to lift and fuse cues from text and 2D vision foundation models directly into 3D, without any manual input. We introduce an unsupervised multi-modal pseudo-labeling method relying on strong geometric priors learned from temporally accumulated LiDAR maps, alongside with a novel iterative update rule that enforces joint geometric-semantic consistency, and vice-versa detecting moving objects from inconsistencies. Our method simultaneously produces 3D semantic labels, 3D bounding boxes, and dense LiDAR scans, demonstrating robust generalization across three datasets. We experimentally validate that our method compares favorably to existing semantic segmentation and object detection pseudo-labeling methods, which often require additional manual supervision. We confirm that even a small fraction of our geometrically consistent, densified LiDAR improves depth prediction by 51.5% and 22.0% MAE in the 80-150 and 150-250 meters range, respectively.
Foundation models for vision are predominantly trained on RGB data, while many safety-critical applications rely on non-visible modalities such as infrared (IR) and synthetic aperture radar (SAR). We study whether a single flow-matching foundation model pre-trained primarily on RGB images can be repurposed as a cross-spectral translator using only a few co-measured examples, and whether the resulting synthetic data can enhance downstream detection. Starting from FLUX.1 Kontext, we insert low-rank adaptation (LoRA) modules and fine-tune them on just 100 paired images per domain for two settings: RGB to IR on the KAIST dataset and RGB to SAR on the M4-SAR dataset. The adapted model translates RGB images into pixel-aligned IR/SAR, enabling us to reuse existing bounding boxes and train object detection models purely in the target modality. Across a grid of LoRA hyperparameters, we find that LPIPS computed on only 50 held-out pairs is a strong proxy for downstream performance: lower LPIPS consistently predicts higher mAP for YOLOv11n on both IR and SAR, and for DETR on KAIST IR test data. Using the best LPIPS-selected LoRA adapter, synthetic IR from external RGB datasets (LLVIP, FLIR ADAS) improves KAIST IR pedestrian detection, and synthetic SAR significantly boosts infrastructure detection on M4-SAR when combined with limited real SAR. Our results suggest that few-shot LoRA adaptation of flow-matching foundation models is a promising path toward foundation-style support for non-visible modalities.
To fully exploit depth cues in Camouflaged Object Detection (COD), we present DGA-Net, a specialized framework that adapts the Segment Anything Model (SAM) via a novel ``depth prompting" paradigm. Distinguished from existing approaches that primarily rely on sparse prompts (e.g., points or boxes), our method introduces a holistic mechanism for constructing and propagating dense depth prompts. Specifically, we propose a Cross-modal Graph Enhancement (CGE) module that synthesizes RGB semantics and depth geometric within a heterogeneous graph to form a unified guidance signal. Furthermore, we design an Anchor-Guided Refinement (AGR) module. To counteract the inherent information decay in feature hierarchies, AGR forges a global anchor and establishes direct non-local pathways to broadcast this guidance from deep to shallow layers, ensuring precise and consistent segmentation. Quantitative and qualitative experimental results demonstrate that our proposed DGA-Net outperforms the state-of-the-art COD methods.