Abstract:Developing reliable UAV navigation systems requires robust air-to-air object detectors capable of distinguishing between objects seen during training and previously unseen objects. While many methods address closed-set detection and achieve high-confidence recognition of in-domain (ID) targets, they generally do not tackle open-set detection, which requires simultaneous handling of both ID and out-of-distribution (OOD) objects. Existing open-set approaches typically rely on a single uncertainty score with thresholding, limiting flexibility and often conflating OOD objects with background clutter. In contrast, we propose a lightweight, model-agnostic post-processing framework that explicitly separates background from unknown objects while preserving the base detector's performance. Our approach extends open-set detection beyond binary ID/OOD classification to real-time three-way classification among ID targets, OOD objects, and background. To this end, we employ a fusion scheme that aggregates multiple confidence estimates and per-detection features using a compact multilayer perceptron (MLP). Incorporating different logit variants into the MLP consistently enhances performance across both binary and three-class classification without compromising throughput. Extensive ablation and comparative experiments confirm that our method surpasses threshold-based baselines in two-class classification by an average of 2.7% AUROC, while retaining or improving open-set mAP. Furthermore, our study uniquely enables robust three-class classification, a critical capability for safe UAV navigation, where OOD objects must be actively avoided and background regions safely ignored. Comparative analysis highlights that our method surpasses competitive techniques in AUROC across datasets, while improving closed-set mAP by up to 9 points, an 18% relative gain.
Abstract:Open-set detection is crucial for robust UAV autonomy in air-to-air object detection under real-world conditions. Traditional closed-set detectors degrade significantly under domain shifts and flight data corruption, posing risks to safety-critical applications. We propose a novel, model-agnostic open-set detection framework designed specifically for embedding-based detectors. The method explicitly handles unknown object rejection while maintaining robustness against corrupted flight data. It estimates semantic uncertainty via entropy modeling in the embedding space and incorporates spectral normalization and temperature scaling to enhance open-set discrimination. We validate our approach on the challenging AOT aerial benchmark and through extensive real-world flight tests. Comprehensive ablation studies demonstrate consistent improvements over baseline methods, achieving up to a 10\% relative AUROC gain compared to standard YOLO-based detectors. Additionally, we show that background rejection further strengthens robustness without compromising detection accuracy, making our solution particularly well-suited for reliable UAV perception in dynamic air-to-air environments.