Topic:3d Human Pose Estimation
What is 3d Human Pose Estimation? 3D Human Pose Estimation is a computer vision task that involves estimating the 3D positions and orientations of body joints and bones from 2D images or videos. The goal is to reconstruct the 3D pose of a person in real time, which can be used in a variety of applications, such as virtual reality, human-computer interaction, and motion analysis.
Papers and Code
Dec 11, 2024
Abstract:We introduce CUPS, a novel method for learning sequence-to-sequence 3D human shapes and poses from RGB videos with uncertainty quantification. To improve on top of prior work, we develop a method to generate and score multiple hypotheses during training, effectively integrating uncertainty quantification into the learning process. This process results in a deep uncertainty function that is trained end-to-end with the 3D pose estimator. Post-training, the learned deep uncertainty model is used as the conformity score, which can be used to calibrate a conformal predictor in order to assess the quality of the output prediction. Since the data in human pose-shape learning is not fully exchangeable, we also present two practical bounds for the coverage gap in conformal prediction, developing theoretical backing for the uncertainty bound of our model. Our results indicate that by taking advantage of deep uncertainty with conformal prediction, our method achieves state-of-the-art performance across various metrics and datasets while inheriting the probabilistic guarantees of conformal prediction.
Via

Jan 14, 2025
Abstract:RGB-based 3D pose estimation methods have been successful with the development of deep learning and the emergence of high-quality 3D pose datasets. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. This problem might be alleviated by involving diverse data during training, however it is non-trivial to collect such diverse data with corresponding labels (i.e. 3D pose). In this paper, we introduced an unsupervised domain adaptation framework for 3D pose estimation that utilizes the unlabeled data in addition to labeled data via masked image modeling (MIM) framework. Foreground-centric reconstruction and attention regularization are further proposed to increase the effectiveness of unlabeled data usage. Experiments are conducted on the various datasets in human and hand pose estimation tasks, especially using the cross-domain scenario. We demonstrated the effectiveness of ours by achieving the state-of-the-art accuracy on all datasets.
* 16 pages, 7 figures
Via

Dec 26, 2024
Abstract:Recent works on dynamic neural field reconstruction assume input from synchronized multi-view videos with known poses. These input constraints are often unmet in real-world setups, making the approach impractical. We demonstrate that unsynchronized videos with unknown poses can generate dynamic neural fields if the videos capture human motion. Humans are one of the most common dynamic subjects whose poses can be estimated using state-of-the-art methods. While noisy, the estimated human shape and pose parameters provide a decent initialization for the highly non-convex and under-constrained problem of training a consistent dynamic neural representation. Given the sequences of pose and shape of humans, we estimate the time offsets between videos, followed by camera pose estimations by analyzing 3D joint locations. Then, we train dynamic NeRF employing multiresolution rids while simultaneously refining both time offsets and camera poses. The setup still involves optimizing many parameters, therefore, we introduce a robust progressive learning strategy to stabilize the process. Experiments show that our approach achieves accurate spatiotemporal calibration and high-quality scene reconstruction in challenging conditions.
Via

Nov 25, 2024
Abstract:Monocular 3D human pose and shape estimation is an inherently ill-posed problem due to depth ambiguities, occlusions, and truncations. Recent probabilistic approaches learn a distribution over plausible 3D human meshes by maximizing the likelihood of the ground-truth pose given an image. We show that this objective function alone is not sufficient to best capture the full distributions. Instead, we propose to additionally supervise the learned distributions by minimizing the distance to distributions encoded in heatmaps of a 2D pose detector. Moreover, we reveal that current methods often generate incorrect hypotheses for invisible joints which is not detected by the evaluation protocols. We demonstrate that person segmentation masks can be utilized during training to significantly decrease the number of invalid samples and introduce two metrics to evaluate it. Our normalizing flow-based approach predicts plausible 3D human mesh hypotheses that are consistent with the image evidence while maintaining high diversity for ambiguous body parts. Experiments on 3DPW and EMDB show that we outperform other state-of-the-art probabilistic methods. Code is available for research purposes at https://github.com/twehrbein/humr.
* WACV 2025
Via

Nov 20, 2024
Abstract:Recent unsupervised methods for monocular 3D pose estimation have endeavored to reduce dependence on limited annotated 3D data, but most are solely formulated in 2D space, overlooking the inherent depth ambiguity issue. Due to the information loss in 3D-to-2D projection, multiple potential depths may exist, yet only some of them are plausible in human structure. To tackle depth ambiguity, we propose a novel unsupervised framework featuring a multi-hypothesis detector and multiple tailored pretext tasks. The detector extracts multiple hypotheses from a heatmap within a local window, effectively managing the multi-solution problem. Furthermore, the pretext tasks harness 3D human priors from the SMPL model to regularize the solution space of pose estimation, aligning it with the empirical distribution of 3D human structures. This regularization is partially achieved through a GCN-based discriminator within the discriminative learning, and is further complemented with synthetic images through rendering, ensuring plausible estimations. Consequently, our approach demonstrates state-of-the-art unsupervised 3D pose estimation performance on various human datasets. Further evaluations on data scale-up and one animal dataset highlight its generalization capabilities. Code will be available at https://github.com/Charrrrrlie/X-as-Supervision.
Via

Oct 06, 2024
Abstract:In the field of 3D Human Pose Estimation from monocular videos, the presence of diverse occlusion types presents a formidable challenge. Prior research has made progress by harnessing spatial and temporal cues to infer 3D poses from 2D joint observations. This paper introduces a Dual Transformer Fusion (DTF) algorithm, a novel approach to obtain a holistic 3D pose estimation, even in the presence of severe occlusions. Confronting the issue of occlusion-induced missing joint data, we propose a temporal interpolation-based occlusion guidance mechanism. To enable precise 3D Human Pose Estimation, our approach leverages the innovative DTF architecture, which first generates a pair of intermediate views. Each intermediate-view undergoes spatial refinement through a self-refinement schema. Subsequently, these intermediate-views are fused to yield the final 3D human pose estimation. The entire system is end-to-end trainable. Through extensive experiments conducted on the Human3.6M and MPI-INF-3DHP datasets, our method's performance is rigorously evaluated. Notably, our approach outperforms existing state-of-the-art methods on both datasets, yielding substantial improvements. The code is available here: https://github.com/MehwishG/DTF.
Via

Nov 19, 2024
Abstract:Musicians delicately control their bodies to generate music. Sometimes, their motions are too subtle to be captured by the human eye. To analyze how they move to produce the music, we need to estimate precise 4D human pose (3D pose over time). However, current state-of-the-art (SoTA) visual pose estimation algorithms struggle to produce accurate monocular 4D poses because of occlusions, partial views, and human-object interactions. They are limited by the viewing angle, pixel density, and sampling rate of the cameras and fail to estimate fast and subtle movements, such as in the musical effect of vibrato. We leverage the direct causal relationship between the music produced and the human motions creating them to address these challenges. We propose VioPose: a novel multimodal network that hierarchically estimates dynamics. High-level features are cascaded to low-level features and integrated into Bayesian updates. Our architecture is shown to produce accurate pose sequences, facilitating precise motion analysis, and outperforms SoTA. As part of this work, we collected the largest and the most diverse calibrated violin-playing dataset, including video, sound, and 3D motion capture poses. Project page: is available at https://sj-yoo.info/viopose/.
* Accepted by WACV 2025 in Round 1. First two authors contributed
equally
Via

Jan 09, 2025
Abstract:In this paper, we introduce Motion-X++, a large-scale multimodal 3D expressive whole-body human motion dataset. Existing motion datasets predominantly capture body-only poses, lacking facial expressions, hand gestures, and fine-grained pose descriptions, and are typically limited to lab settings with manually labeled text descriptions, thereby restricting their scalability. To address this issue, we develop a scalable annotation pipeline that can automatically capture 3D whole-body human motion and comprehensive textural labels from RGB videos and build the Motion-X dataset comprising 81.1K text-motion pairs. Furthermore, we extend Motion-X into Motion-X++ by improving the annotation pipeline, introducing more data modalities, and scaling up the data quantities. Motion-X++ provides 19.5M 3D whole-body pose annotations covering 120.5K motion sequences from massive scenes, 80.8K RGB videos, 45.3K audios, 19.5M frame-level whole-body pose descriptions, and 120.5K sequence-level semantic labels. Comprehensive experiments validate the accuracy of our annotation pipeline and highlight Motion-X++'s significant benefits for generating expressive, precise, and natural motion with paired multimodal labels supporting several downstream tasks, including text-driven whole-body motion generation,audio-driven motion generation, 3D whole-body human mesh recovery, and 2D whole-body keypoints estimation, etc.
* 17 pages, 14 figures, This work extends and enhances the research
published in the NeurIPS 2023 paper, "Motion-X: A Large-scale 3D Expressive
Whole-body Human Motion Dataset". arXiv admin note: substantial text overlap
with arXiv:2307.00818
Via

Dec 19, 2024
Abstract:Creating a high-fidelity, animatable 3D full-body avatar from a single image is a challenging task due to the diverse appearance and poses of humans and the limited availability of high-quality training data. To achieve fast and high-quality human reconstruction, this work rethinks the task from the perspectives of dataset, model, and representation. First, we introduce a large-scale HUman-centric GEnerated dataset, HuGe100K, consisting of 100K diverse, photorealistic sets of human images. Each set contains 24-view frames in specific human poses, generated using a pose-controllable image-to-multi-view model. Next, leveraging the diversity in views, poses, and appearances within HuGe100K, we develop a scalable feed-forward transformer model to predict a 3D human Gaussian representation in a uniform space from a given human image. This model is trained to disentangle human pose, body shape, clothing geometry, and texture. The estimated Gaussians can be animated without post-processing. We conduct comprehensive experiments to validate the effectiveness of the proposed dataset and method. Our model demonstrates the ability to efficiently reconstruct photorealistic humans at 1K resolution from a single input image using a single GPU instantly. Additionally, it seamlessly supports various applications, as well as shape and texture editing tasks.
* 21 pages, 15 figures, includes main content, supplementary materials,
and references
Via

Dec 11, 2024
Abstract:Single-image human mesh recovery is a challenging task due to the ill-posed nature of simultaneous body shape, pose, and camera estimation. Existing estimators work well on images taken from afar, but they break down as the person moves close to the camera. Moreover, current methods fail to achieve both accurate 3D pose and 2D alignment at the same time. Error is mainly introduced by inaccurate perspective projection heuristically derived from orthographic parameters. To resolve this long-standing challenge, we present our method BLADE which accurately recovers perspective parameters from a single image without heuristic assumptions. We start from the inverse relationship between perspective distortion and the person's Z-translation Tz, and we show that Tz can be reliably estimated from the image. We then discuss the important role of Tz for accurate human mesh recovery estimated from close-range images. Finally, we show that, once Tz and the 3D human mesh are estimated, one can accurately recover the focal length and full 3D translation. Extensive experiments on standard benchmarks and real-world close-range images show that our method is the first to accurately recover projection parameters from a single image, and consequently attain state-of-the-art accuracy on 3D pose estimation and 2D alignment for a wide range of images. https://research.nvidia.com/labs/amri/projects/blade/
Via
