Abstract:Video personalization aims to generate videos that faithfully reflect a user-provided subject while following a text prompt. However, existing approaches often rely on heavy video-based finetuning or large-scale video datasets, which impose substantial computational cost and are difficult to scale. Furthermore, they still struggle to maintain fine-grained appearance consistency across frames. To address these limitations, we introduce V-Warper, a training-free coarse-to-fine personalization framework for transformer-based video diffusion models. The framework enhances fine-grained identity fidelity without requiring any additional video training. (1) A lightweight coarse appearance adaptation stage leverages only a small set of reference images, which are already required for the task. This step encodes global subject identity through image-only LoRA and subject-embedding adaptation. (2) A inference-time fine appearance injection stage refines visual fidelity by computing semantic correspondences from RoPE-free mid-layer query--key features. These correspondences guide the warping of appearance-rich value representations into semantically aligned regions of the generation process, with masking ensuring spatial reliability. V-Warper significantly improves appearance fidelity while preserving prompt alignment and motion dynamics, and it achieves these gains efficiently without large-scale video finetuning.




Abstract:Deep learning models have been successful in many areas but understanding their behaviors still remains a black-box. Most prior explainable AI (XAI) approaches have focused on interpreting and explaining how models make predictions. In contrast, we would like to understand how data can be explained with deep learning model training and propose a novel approach to understand the data via one of the most common media - language - so that humans can easily understand. Our approach proposes a pipeline to generate textual descriptions that can explain the data with large language models by incorporating external knowledge bases. However, generated data descriptions may still include irrelevant information, so we introduce to exploit influence estimation to choose the most informative textual descriptions, along with the CLIP score. Furthermore, based on the phenomenon of cross-modal transferability, we propose a novel benchmark task named cross-modal transfer classification to examine the effectiveness of our textual descriptions. In the experiment of zero-shot setting, we show that our textual descriptions are more effective than other baseline descriptions, and furthermore, we successfully boost the performance of the model trained only on images across all nine image classification datasets. These results are further supported by evaluation using GPT-4o. Through our approach, we may gain insights into the inherent interpretability of the decision-making process of the model.
Abstract:Automatically assessing handwritten mathematical solutions is an important problem in educational technology with practical applications, but it remains a significant challenge due to the diverse formats, unstructured layouts, and symbolic complexity of student work. To address this challenge, we introduce VEHME-a Vision-Language Model for Evaluating Handwritten Mathematics Expressions-designed to assess open-form handwritten math responses with high accuracy and interpretable reasoning traces. VEHME integrates a two-phase training pipeline: (i) supervised fine-tuning using structured reasoning data, and (ii) reinforcement learning that aligns model outputs with multi-dimensional grading objectives, including correctness, reasoning depth, and error localization. To enhance spatial understanding, we propose an Expression-Aware Visual Prompting Module, trained on our synthesized multi-line math expressions dataset to robustly guide attention in visually heterogeneous inputs. Evaluated on AIHub and FERMAT datasets, VEHME achieves state-of-the-art performance among open-source models and approaches the accuracy of proprietary systems, demonstrating its potential as a scalable and accessible tool for automated math assessment. Our training and experiment code is publicly available at our GitHub repository.
Abstract:The self-attention mechanism, while foundational to modern Transformer architectures, suffers from a critical inefficiency: it frequently allocates substantial attention to redundant or noisy context. Differential Attention addressed this by using subtractive attention maps for signal and noise, but its required balanced head allocation imposes rigid constraints on representational flexibility and scalability. To overcome this, we propose Grouped Differential Attention (GDA), a novel approach that introduces unbalanced head allocation between signal-preserving and noise-control groups. GDA significantly enhances signal focus by strategically assigning more heads to signal extraction and fewer to noise-control, stabilizing the latter through controlled repetition (akin to GQA). This design achieves stronger signal fidelity with minimal computational overhead. We further extend this principle to group-differentiated growth, a scalable strategy that selectively replicates only the signal-focused heads, thereby ensuring efficient capacity expansion. Through large-scale pretraining and continual training experiments, we demonstrate that moderate imbalance ratios in GDA yield substantial improvements in generalization and stability compared to symmetric baselines. Our results collectively establish that ratio-aware head allocation and selective expansion offer an effective and practical path toward designing scalable, computation-efficient Transformer architectures.
Abstract:Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC




Abstract:Video action recognition is a challenging but important task for understanding and discovering what the video does. However, acquiring annotations for a video is costly, and semi-supervised learning (SSL) has been studied to improve performance even with a small number of labeled data in the task. Prior studies for semi-supervised video action recognition have mostly focused on using single modality - visuals - but the video is multi-modal, so utilizing both visuals and audio would be desirable and improve performance further, which has not been explored well. Therefore, we propose audio-visual SSL for video action recognition, which uses both visual and audio together, even with quite a few labeled data, which is challenging. In addition, to maximize the information of audio and video, we propose a novel audio source localization-guided mixup method that considers inter-modal relations between video and audio modalities. In experiments on UCF-51, Kinetics-400, and VGGSound datasets, our model shows the superior performance of the proposed semi-supervised audio-visual action recognition framework and audio source localization-guided mixup.




Abstract:Transformers have achieved great success in effectively processing sequential data such as text. Their architecture consisting of several attention and feedforward blocks can model relations between elements of a sequence in parallel manner, which makes them very efficient to train and effective in sequence modeling. Even though they have shown strong performance in processing sequential data, the size of their parameters is considerably larger when compared to other architectures such as RNN and CNN based models. Therefore, several approaches have explored parameter sharing and recurrence in Transformer models to address their computational demands. However, such methods struggle to maintain high performance compared to the original transformer model. To address this challenge, we propose our novel approach, RingFormer, which employs one Transformer layer that processes input repeatedly in a circular, ring-like manner, while utilizing low-rank matrices to generate input-dependent level signals. This allows us to reduce the model parameters substantially while maintaining high performance in a variety of tasks such as translation and image classification, as validated in the experiments.
Abstract:RGB-based 3D pose estimation methods have been successful with the development of deep learning and the emergence of high-quality 3D pose datasets. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. This problem might be alleviated by involving diverse data during training, however it is non-trivial to collect such diverse data with corresponding labels (i.e. 3D pose). In this paper, we introduced an unsupervised domain adaptation framework for 3D pose estimation that utilizes the unlabeled data in addition to labeled data via masked image modeling (MIM) framework. Foreground-centric reconstruction and attention regularization are further proposed to increase the effectiveness of unlabeled data usage. Experiments are conducted on the various datasets in human and hand pose estimation tasks, especially using the cross-domain scenario. We demonstrated the effectiveness of ours by achieving the state-of-the-art accuracy on all datasets.
Abstract:Text-guided image editing and generation methods have diverse real-world applications. However, text-guided infinite image synthesis faces several challenges. First, there is a lack of text-image paired datasets with high-resolution and contextual diversity. Second, expanding images based on text requires global coherence and rich local context understanding. Previous studies have mainly focused on limited categories, such as natural landscapes, and also required to train on high-resolution images with paired text. To address these challenges, we propose a novel approach utilizing Large Language Models (LLMs) for both global coherence and local context understanding, without any high-resolution text-image paired training dataset. We train the diffusion model to expand an image conditioned on global and local captions generated from the LLM and visual feature. At the inference stage, given an image and a global caption, we use the LLM to generate a next local caption to expand the input image. Then, we expand the image using the global caption, generated local caption and the visual feature to consider global consistency and spatial local context. In experiments, our model outperforms the baselines both quantitatively and qualitatively. Furthermore, our model demonstrates the capability of text-guided arbitrary-sized image generation in zero-shot manner with LLM guidance.




Abstract:Recent advances in the diffusion models have significantly improved text-to-image generation. However, generating videos from text is a more challenging task than generating images from text, due to the much larger dataset and higher computational cost required. Most existing video generation methods use either a 3D U-Net architecture that considers the temporal dimension or autoregressive generation. These methods require large datasets and are limited in terms of computational costs compared to text-to-image generation. To tackle these challenges, we propose a simple but effective novel grid diffusion for text-to-video generation without temporal dimension in architecture and a large text-video paired dataset. We can generate a high-quality video using a fixed amount of GPU memory regardless of the number of frames by representing the video as a grid image. Additionally, since our method reduces the dimensions of the video to the dimensions of the image, various image-based methods can be applied to videos, such as text-guided video manipulation from image manipulation. Our proposed method outperforms the existing methods in both quantitative and qualitative evaluations, demonstrating the suitability of our model for real-world video generation.