Zero Shot Segmentation


Zero-shot segmentation is the process of segmenting objects in images without using any labeled data.

Anatomically Guided Latent Diffusion for Brain MRI Progression Modeling

Add code
Jan 21, 2026
Viaarxiv icon

VideoMaMa: Mask-Guided Video Matting via Generative Prior

Add code
Jan 20, 2026
Viaarxiv icon

Analyzing VLM-Based Approaches for Anomaly Classification and Segmentation

Add code
Jan 19, 2026
Viaarxiv icon

Synthetic Volumetric Data Generation Enables Zero-Shot Generalization of Foundation Models in 3D Medical Image Segmentation

Add code
Jan 18, 2026
Viaarxiv icon

Seeing Radio: From Zero RF Priors to Explainable Modulation Recognition with Vision Language Models

Add code
Jan 19, 2026
Viaarxiv icon

Segment and Matte Anything in a Unified Model

Add code
Jan 17, 2026
Viaarxiv icon

Shapelets-Enriched Selective Forecasting using Time Series Foundation Models

Add code
Jan 16, 2026
Viaarxiv icon

Improving Zero-shot ADL Recognition with Large Language Models through Event-based Context and Confidence

Add code
Jan 13, 2026
Viaarxiv icon

Action100M: A Large-scale Video Action Dataset

Add code
Jan 15, 2026
Viaarxiv icon

Urban Socio-Semantic Segmentation with Vision-Language Reasoning

Add code
Jan 15, 2026
Viaarxiv icon