Abstract:The preservation of early visual arts, particularly color photographs, is challenged by deterioration caused by aging and improper storage, leading to issues like blurring, scratches, color bleeding, and fading defects. In this paper, we present the first approach for the automatic removal of greening color defects in digitized autochrome photographs. Our main contributions include a method based on synthetic dataset generation and the use of generative AI with a carefully designed loss function for the restoration of visual arts. To address the lack of suitable training datasets for analyzing greening defects in damaged autochromes, we introduce a novel approach for accurately simulating such defects in synthetic data. We also propose a modified weighted loss function for the ChaIR method to account for color imbalances between defected and non-defected areas. While existing methods struggle with accurately reproducing original colors and may require significant manual effort, our method allows for efficient restoration with reduced time requirements.
Abstract:We propose a novel cross-spectral rendering framework based on 3D Gaussian Splatting (3DGS) that generates realistic and semantically meaningful splats from registered multi-view spectrum and segmentation maps. This extension enhances the representation of scenes with multiple spectra, providing insights into the underlying materials and segmentation. We introduce an improved physically-based rendering approach for Gaussian splats, estimating reflectance and lights per spectra, thereby enhancing accuracy and realism. In a comprehensive quantitative and qualitative evaluation, we demonstrate the superior performance of our approach with respect to other recent learning-based spectral scene representation approaches (i.e., XNeRF and SpectralNeRF) as well as other non-spectral state-of-the-art learning-based approaches. Our work also demonstrates the potential of spectral scene understanding for precise scene editing techniques like style transfer, inpainting, and removal. Thereby, our contributions address challenges in multi-spectral scene representation, rendering, and editing, offering new possibilities for diverse applications.