Comprehensive panoramic scene understanding is critical for immersive applications, yet it remains challenging due to the scarcity of high-resolution, multi-task annotations. While perspective foundation models have achieved success through data scaling, directly adapting them to the panoramic domain often fails due to severe geometric distortions and coordinate system discrepancies. Furthermore, the underlying relations between diverse dense prediction tasks in spherical spaces are underexplored. To address these challenges, we propose MTPano, a robust multi-task panoramic foundation model established by a label-free training pipeline. First, to circumvent data scarcity, we leverage powerful perspective dense priors. We project panoramic images into perspective patches to generate accurate, domain-gap-free pseudo-labels using off-the-shelf foundation models, which are then re-projected to serve as patch-wise supervision. Second, to tackle the interference between task types, we categorize tasks into rotation-invariant (e.g., depth, segmentation) and rotation-variant (e.g., surface normals) groups. We introduce the Panoramic Dual BridgeNet, which disentangles these feature streams via geometry-aware modulation layers that inject absolute position and ray direction priors. To handle the distortion from equirectangular projections (ERP), we incorporate ERP token mixers followed by a dual-branch BridgeNet for interactions with gradient truncation, facilitating beneficial cross-task information sharing while blocking conflicting gradients from incompatible task attributes. Additionally, we introduce auxiliary tasks (image gradient, point map, etc.) to fertilize the cross-task learning process. Extensive experiments demonstrate that MTPano achieves state-of-the-art performance on multiple benchmarks and delivers competitive results against task-specific panoramic specialist foundation models.
LiDAR point clouds captured in rain or snow are often corrupted by weather-induced returns, which can degrade perception and safety-critical scene understanding. This paper proposes Intensity- and Distance-Aware Statistical Outlier Removal (IDSOR), a range-adaptive filtering method that jointly exploits intensity cues and neighborhood sparsity. By incorporating an empirical, range-dependent distribution of weather returns into the threshold design, IDSOR suppresses weather-induced points while preserving fine structural details without cumbersome manual parameter tuning. We also propose a variant that uses a previously proposed method to estimate the weather return distribution from data, and integrates it into IDSOR. Experiments on simulation-augmented level-crossing measurements and on the Winter Adverse Driving dataset (WADS) demonstrate that IDSOR achieves a favorable precision-recall trade-off, maintaining both precision and recall above 90% on WADS.
Neural implicit mapping has emerged as a powerful paradigm for robotic navigation and scene understanding. However, real-world robotic deployment requires continual adaptation to changing environments under strict memory and computation constraints, which existing mapping systems fail to support. Most prior methods rely on replaying historical observations to preserve consistency and assume static scenes. As a result, they cannot adapt to continual learning in dynamic robotic settings. To address these challenges, we propose TACO (TemporAl Consensus Optimization), a replay-free framework for continual neural mapping. We reformulate mapping as a temporal consensus optimization problem, where we treat past model snapshots as temporal neighbors. Intuitively, our approach resembles a model consulting its own past knowledge. We update the current map by enforcing weighted consensus with historical representations. Our method allows reliable past geometry to constrain optimization while permitting unreliable or outdated regions to be revised in response to new observations. TACO achieves a balance between memory efficiency and adaptability without storing or replaying previous data. Through extensive simulated and real-world experiments, we show that TACO robustly adapts to scene changes, and consistently outperforms other continual learning baselines.
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
The advancement of multimodal large language models (MLLMs) has enabled impressive perception capabilities. However, their reasoning process often remains a "fast thinking" paradigm, reliant on end-to-end generation or explicit, language-centric chains of thought (CoT), which can be inefficient, verbose, and prone to hallucination. This work posits that robust reasoning should evolve within a latent space, integrating multimodal signals seamlessly. We propose multimodal latent reasoning via HIerarchical Visual cuEs injection (\emph{HIVE}), a novel framework that instills deliberate, "slow thinking" without depending on superficial textual rationales. Our method recursively extends transformer blocks, creating an internal loop for iterative reasoning refinement. Crucially, it injectively grounds this process with hierarchical visual cues from global scene context to fine-grained regional details directly into the model's latent representations. This enables the model to perform grounded, multi-step inference entirely in the aligned latent space. Extensive evaluations demonstrate that test-time scaling is effective when incorporating vision knowledge, and that integrating hierarchical information significantly enhances the model's understanding of complex scenes.
While foundation models have advanced surgical video analysis, current approaches rely predominantly on pixel-level reconstruction objectives that waste model capacity on low-level visual details - such as smoke, specular reflections, and fluid motion - rather than semantic structures essential for surgical understanding. We present UniSurg, a video-native foundation model that shifts the learning paradigm from pixel-level reconstruction to latent motion prediction. Built on the Video Joint Embedding Predictive Architecture (V-JEPA), UniSurg introduces three key technical innovations tailored to surgical videos: 1) motion-guided latent prediction to prioritize semantically meaningful regions, 2) spatiotemporal affinity self-distillation to enforce relational consistency, and 3) feature diversity regularization to prevent representation collapse in texture-sparse surgical scenes. To enable large-scale pretraining, we curate UniSurg-15M, the largest surgical video dataset to date, comprising 3,658 hours of video from 50 sources across 13 anatomical regions. Extensive experiments across 17 benchmarks demonstrate that UniSurg significantly outperforms state-of-the-art methods on surgical workflow recognition (+14.6% F1 on EgoSurgery, +10.3% on PitVis), action triplet recognition (39.54% mAP-IVT on CholecT50), skill assessment, polyp segmentation, and depth estimation. These results establish UniSurg as a new standard for universal, motion-oriented surgical video understanding.
Robots are finding wider adoption in human environments, increasing the need for natural human-robot interaction. However, understanding a natural language command requires the robot to infer the intended task and how to decompose it into executable actions, and to ground those actions in the robot's knowledge of the environment, including relevant objects, agents, and locations. This challenge can be addressed by combining the capabilities of Large language models (LLMs) to understand natural language with 3D scene graphs (3DSGs) for grounding inferred actions in a semantic representation of the environment. However, many 3DSGs lack explicit spatial relations between objects, even though humans often rely on these relations to describe an environment. This paper investigates whether incorporating open- or closed-vocabulary spatial relations into 3DSGs can improve the ability of LLMs to interpret natural language commands. To address this, we propose an LLM-based pipeline for target object grounding from open-vocabulary language commands and a vision language model (VLM)-based pipeline to add open-vocabulary spatial edges to 3DSGs from images captured while mapping. Finally, two LLMs are evaluated in a study assessing their performance on the downstream task of target object grounding. Our study demonstrates that explicit spatial relations improve the ability of LLMs to ground objects. Moreover, open-vocabulary relation generation with VLMs proves feasible from robot-captured images, but their advantage over closed-vocabulary relations is found to be limited.
Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.
Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning