Abstract:Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.
Abstract:Large Vision-Language Models (LVLMs) demonstrate significant progress in multimodal understanding and reasoning, yet object hallucination remains a critical challenge. While existing research focuses on mitigating language priors or high-level statistical biases, they often overlook the internal complexities of the visual encoding process. We identify that visual statistical bias, arising from the inherent Bag-of-Patches behavior of Vision Encoders under weak structural supervision, acts as a contributing factor of object hallucinations. Under this bias, models prioritize local texture features within individual patches over holistic geometric structures. This tendency may induce spurious visual confidence and result in hallucinations. To address this, we introduce a training-free algorithm called Structure-Disrupted Contrastive Decoding (SDCD), which performs contrastive calibration of the output distribution by introducing a shuffled structure-disrupted view. By penalizing tokens that maintain high confidence under this structure-less view, SDCD effectively suppresses the texture-driven bias. Experimental results demonstrate that SDCD significantly mitigates hallucinations across multiple benchmarks and enhances the overall multimodal capabilities of LVLMs.