Topic:Panoptic Segmentation
What is Panoptic Segmentation? Panoptic segmentation is a computer vision task that combines semantic segmentation and instance segmentation to provide a comprehensive understanding of the scene. The goal of panoptic segmentation is to segment the image into semantically meaningful parts or regions, while also detecting and distinguishing individual instances of objects within those regions. In a given image, every pixel is assigned a semantic label, and pixels belonging to things classes (countable objects with instances, like cars and people) are assigned unique instance IDs.
Papers and Code
Jun 16, 2025
Abstract:Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
Via

Jun 16, 2025
Abstract:Video Scene Parsing (VSP) has emerged as a cornerstone in computer vision, facilitating the simultaneous segmentation, recognition, and tracking of diverse visual entities in dynamic scenes. In this survey, we present a holistic review of recent advances in VSP, covering a wide array of vision tasks, including Video Semantic Segmentation (VSS), Video Instance Segmentation (VIS), Video Panoptic Segmentation (VPS), as well as Video Tracking and Segmentation (VTS), and Open-Vocabulary Video Segmentation (OVVS). We systematically analyze the evolution from traditional hand-crafted features to modern deep learning paradigms -- spanning from fully convolutional networks to the latest transformer-based architectures -- and assess their effectiveness in capturing both local and global temporal contexts. Furthermore, our review critically discusses the technical challenges, ranging from maintaining temporal consistency to handling complex scene dynamics, and offers a comprehensive comparative study of datasets and evaluation metrics that have shaped current benchmarking standards. By distilling the key contributions and shortcomings of state-of-the-art methodologies, this survey highlights emerging trends and prospective research directions that promise to further elevate the robustness and adaptability of VSP in real-world applications.
Via

Jun 12, 2025
Abstract:We present SLICK, a novel framework for precise and robust car damage segmentation that leverages structural priors and domain knowledge to tackle real-world automotive inspection challenges. SLICK introduces five key components: (1) Selective Part Segmentation using a high-resolution semantic backbone guided by structural priors to achieve surgical accuracy in segmenting vehicle parts even under occlusion, deformation, or paint loss; (2) Localization-Aware Attention blocks that dynamically focus on damaged regions, enhancing fine-grained damage detection in cluttered and complex street scenes; (3) an Instance-Sensitive Refinement head that leverages panoptic cues and shape priors to disentangle overlapping or adjacent parts, enabling precise boundary alignment; (4) Cross-Channel Calibration through multi-scale channel attention that amplifies subtle damage signals such as scratches and dents while suppressing noise like reflections and decals; and (5) a Knowledge Fusion Module that integrates synthetic crash data, part geometry, and real-world insurance datasets to improve generalization and handle rare cases effectively. Experiments on large-scale automotive datasets demonstrate SLICK's superior segmentation performance, robustness, and practical applicability for insurance and automotive inspection workflows.
* 10 pages
Via

May 25, 2025
Abstract:LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at <https://github.com/IMPL-Lab/IAL.git>.
* Accepted at the 2025 International Conference on Machine Learning
(ICML)
Via

May 28, 2025
Abstract:Accurate lesion-level segmentation on MRI is critical for multiple sclerosis (MS) diagnosis, prognosis, and disease monitoring. However, current evaluation practices largely rely on semantic segmentation post-processed with connected components (CC), which cannot separate confluent lesions (aggregates of confluent lesion units, CLUs) due to reliance on spatial connectivity. To address this misalignment with clinical needs, we introduce formal definitions of CLUs and associated CLU-aware detection metrics, and include them in an exhaustive instance segmentation evaluation framework. Within this framework, we systematically evaluate CC and post-processing-based Automated Confluent Splitting (ACLS), the only existing methods for lesion instance segmentation in MS. Our analysis reveals that CC consistently underestimates CLU counts, while ACLS tends to oversplit lesions, leading to overestimated lesion counts and reduced precision. To overcome these limitations, we propose ConfLUNet, the first end-to-end instance segmentation framework for MS lesions. ConfLUNet jointly optimizes lesion detection and delineation from a single FLAIR image. Trained on 50 patients, ConfLUNet significantly outperforms CC and ACLS on the held-out test set (n=13) in instance segmentation (Panoptic Quality: 42.0% vs. 37.5%/36.8%; p = 0.017/0.005) and lesion detection (F1: 67.3% vs. 61.6%/59.9%; p = 0.028/0.013). For CLU detection, ConfLUNet achieves the highest F1[CLU] (81.5%), improving recall over CC (+12.5%, p = 0.015) and precision over ACLS (+31.2%, p = 0.003). By combining rigorous definitions, new CLU-aware metrics, a reproducible evaluation framework, and the first dedicated end-to-end model, this work lays the foundation for lesion instance segmentation in MS.
Via

May 26, 2025
Abstract:Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.
Via

May 22, 2025
Abstract:Open-Vocabulary Segmentation (OVS) has drawn increasing attention for its capacity to generalize segmentation beyond predefined categories. However, existing methods typically predict segmentation masks with simple forward inference, lacking explicit reasoning and interpretability. This makes it challenging for OVS model to distinguish similar categories in open-world settings due to the lack of contextual understanding and discriminative visual cues. To address this limitation, we propose a step-by-step visual reasoning framework for open-vocabulary segmentation, named OpenSeg-R. The proposed OpenSeg-R leverages Large Multimodal Models (LMMs) to perform hierarchical visual reasoning before segmentation. Specifically, we generate both generic and image-specific reasoning for each image, forming structured triplets that explain the visual reason for objects in a coarse-to-fine manner. Based on these reasoning steps, we can compose detailed description prompts, and feed them to the segmentor to produce more accurate segmentation masks. To the best of our knowledge, OpenSeg-R is the first framework to introduce explicit step-by-step visual reasoning into OVS. Experimental results demonstrate that OpenSeg-R significantly outperforms state-of-the-art methods on open-vocabulary semantic segmentation across five benchmark datasets. Moreover, it achieves consistent gains across all metrics on open-vocabulary panoptic segmentation. Qualitative results further highlight the effectiveness of our reasoning-guided framework in improving both segmentation precision and interpretability. Our code is publicly available at https://github.com/Hanzy1996/OpenSeg-R.
Via

May 17, 2025
Abstract:Segmentation evaluation metrics traditionally rely on binary decision logic: predictions are either correct or incorrect, based on rigid IoU thresholds. Detection--based metrics such as F1 and mAP determine correctness at the object level using fixed overlap cutoffs, while overlap--based metrics like Intersection over Union (IoU) and Dice operate at the pixel level, often overlooking instance--level structure. Panoptic Quality (PQ) attempts to unify detection and segmentation assessment, but it remains dependent on hard-threshold matching--treating predictions below the threshold as entirely incorrect. This binary framing obscures important distinctions between qualitatively different errors and fails to reward gradual model improvements. We propose SoftPQ, a flexible and interpretable instance segmentation metric that redefines evaluation as a graded continuum rather than a binary classification. SoftPQ introduces tunable upper and lower IoU thresholds to define a partial matching region and applies a sublinear penalty function to ambiguous or fragmented predictions. These extensions allow SoftPQ to exhibit smoother score behavior, greater robustness to structural segmentation errors, and more informative feedback for model development and evaluation. Through controlled perturbation experiments, we show that SoftPQ captures meaningful differences in segmentation quality that existing metrics overlook, making it a practical and principled alternative for both benchmarking and iterative model refinement.
Via

May 21, 2025
Abstract:Mapping and understanding complex 3D environments is fundamental to how autonomous systems perceive and interact with the physical world, requiring both precise geometric reconstruction and rich semantic comprehension. While existing 3D semantic mapping systems excel at reconstructing and identifying predefined object instances, they lack the flexibility to efficiently build semantic maps with open-vocabulary during online operation. Although recent vision-language models have enabled open-vocabulary object recognition in 2D images, they haven't yet bridged the gap to 3D spatial understanding. The critical challenge lies in developing a training-free unified system that can simultaneously construct accurate 3D maps while maintaining semantic consistency and supporting natural language interactions in real time. In this paper, we develop a zero-shot framework that seamlessly integrates GPU-accelerated geometric reconstruction with open-vocabulary vision-language models through online instance-level semantic embedding fusion, guided by hierarchical object association with spatial indexing. Our training-free system achieves superior performance through incremental processing and unified geometric-semantic updates, while robustly handling 2D segmentation inconsistencies. The proposed general-purpose 3D scene understanding framework can be used for various tasks including zero-shot 3D instance retrieval, segmentation, and object detection to reason about previously unseen objects and interpret natural language queries. The project page is available at https://razer-3d.github.io.
Via

May 01, 2025
Abstract:Open-vocabulary 3D panoptic segmentation has recently emerged as a significant trend. Top-performing methods currently integrate 2D segmentation with geometry-aware 3D primitives. However, the advantage would be lost without high-fidelity 3D point clouds, such as methods based on Neural Radiance Field (NeRF). These methods are limited by the insufficient capacity to maintain consistency across partial observations. To address this, recent works have utilized contrastive loss or cross-view association pre-processing for view consensus. In contrast to them, we present Cues3D, a compact approach that relies solely on NeRF instead of pre-associations. The core idea is that NeRF's implicit 3D field inherently establishes a globally consistent geometry, enabling effective object distinction without explicit cross-view supervision. We propose a three-phase training framework for NeRF, initialization-disambiguation-refinement, whereby the instance IDs are corrected using the initially-learned knowledge. Additionally, an instance disambiguation method is proposed to match NeRF-rendered 3D masks and ensure globally unique 3D instance identities. With the aid of Cues3D, we obtain highly consistent and unique 3D instance ID for each object across views with a balanced version of NeRF. Our experiments are conducted on ScanNet v2, ScanNet200, ScanNet++, and Replica datasets for 3D instance, panoptic, and semantic segmentation tasks. Cues3D outperforms other 2D image-based methods and competes with the latest 2D-3D merging based methods, while even surpassing them when using additional 3D point clouds. The code link could be found in the appendix and will be released on \href{https://github.com/mRobotit/Cues3D}{github}
* Accepted by Information Fusion
Via
