Topic:Infrared And Visible Image Fusion
What is Infrared And Visible Image Fusion? Infrared-and-visible image fusion is the process of combining images from different spectral bands to enhance visual perception.
Papers and Code
May 11, 2025
Abstract:Acquiring accurately aligned multi-modal image pairs is fundamental for achieving high-quality multi-modal image fusion. To address the lack of ground truth in current multi-modal image registration and fusion methods, we propose a novel self-supervised \textbf{B}i-directional \textbf{S}elf-\textbf{R}egistration framework (\textbf{B-SR}). Specifically, B-SR utilizes a proxy data generator (PDG) and an inverse proxy data generator (IPDG) to achieve self-supervised global-local registration. Visible-infrared image pairs with spatially misaligned differences are aligned to obtain global differences through the registration module. The same image pairs are processed by PDG, such as cropping, flipping, stitching, etc., and then aligned to obtain local differences. IPDG converts the obtained local differences into pseudo-global differences, which are used to perform global-local difference consistency with the global differences. Furthermore, aiming at eliminating the effect of modal gaps on the registration module, we design a neighborhood dynamic alignment loss to achieve cross-modal image edge alignment. Extensive experiments on misaligned multi-modal images demonstrate the effectiveness of the proposed method in multi-modal image alignment and fusion against the competing methods. Our code will be publicly available.
Via

May 10, 2025
Abstract:Visible and infrared image fusion (VIF) has attracted significant attention in recent years. Traditional VIF methods primarily focus on generating fused images with high visual quality, while recent advancements increasingly emphasize incorporating semantic information into the fusion model during training. However, most existing segmentation-oriented VIF methods adopt a cascade structure comprising separate fusion and segmentation models, leading to increased network complexity and redundancy. This raises a critical question: can we design a more concise and efficient structure to integrate semantic information directly into the fusion model during training-Inspired by multi-task learning, we propose a concise and universal training framework, MultiTaskVIF, for segmentation-oriented VIF models. In this framework, we introduce a multi-task head decoder (MTH) to simultaneously output both the fused image and the segmentation result during training. Unlike previous cascade training frameworks that necessitate joint training with a complete segmentation model, MultiTaskVIF enables the fusion model to learn semantic features by simply replacing its decoder with MTH. Extensive experimental evaluations validate the effectiveness of the proposed method. Our code will be released upon acceptance.
Via

May 07, 2025
Abstract:Visible and infrared image fusion is one of the most crucial tasks in the field of image fusion, aiming to generate fused images with clear structural information and high-quality texture features for high-level vision tasks. However, when faced with severe illumination degradation in visible images, the fusion results of existing image fusion methods often exhibit blurry and dim visual effects, posing major challenges for autonomous driving. To this end, a Darkness-Free network is proposed to handle Visible and infrared image disentanglement and fusion all at Once (DFVO), which employs a cascaded multi-task approach to replace the traditional two-stage cascaded training (enhancement and fusion), addressing the issue of information entropy loss caused by hierarchical data transmission. Specifically, we construct a latent-common feature extractor (LCFE) to obtain latent features for the cascaded tasks strategy. Firstly, a details-extraction module (DEM) is devised to acquire high-frequency semantic information. Secondly, we design a hyper cross-attention module (HCAM) to extract low-frequency information and preserve texture features from source images. Finally, a relevant loss function is designed to guide the holistic network learning, thereby achieving better image fusion. Extensive experiments demonstrate that our proposed approach outperforms state-of-the-art alternatives in terms of qualitative and quantitative evaluations. Particularly, DFVO can generate clearer, more informative, and more evenly illuminated fusion results in the dark environments, achieving best performance on the LLVIP dataset with 63.258 dB PSNR and 0.724 CC, providing more effective information for high-level vision tasks. Our code is publicly accessible at https://github.com/DaVin-Qi530/DFVO.
Via

May 05, 2025
Abstract:Visible images provide rich details and color information only under well-lighted conditions while infrared images effectively highlight thermal targets under challenging conditions such as low visibility and adverse weather. Infrared-visible image fusion aims to integrate complementary information from infrared and visible images to generate a high-quality fused image. Existing methods exhibit critical limitations such as neglecting color structure information in visible images and performance degradation when processing low-quality color-visible inputs. To address these issues, we propose a quaternion infrared-visible image fusion (QIVIF) framework to generate high-quality fused images completely in the quaternion domain. QIVIF proposes a quaternion low-visibility feature learning model to adaptively extract salient thermal targets and fine-grained texture details from input infrared and visible images respectively under diverse degraded conditions. QIVIF then develops a quaternion adaptive unsharp masking method to adaptively improve high-frequency feature enhancement with balanced illumination. QIVIF further proposes a quaternion hierarchical Bayesian fusion model to integrate infrared saliency and enhanced visible details to obtain high-quality fused images. Extensive experiments across diverse datasets demonstrate that our QIVIF surpasses state-of-the-art methods under challenging low-visibility conditions.
Via

Apr 15, 2025
Abstract:Existing infrared and visible image fusion(IVIF) algorithms often prioritize high-quality images, neglecting image degradation such as low light and noise, which limits the practical potential. This paper propose Degradation-Aware Adaptive image Fusion (DAAF), which achieves unified modeling of adaptive degradation optimization and image fusion. Specifically, DAAF comprises an auxiliary Adaptive Degradation Optimization Network (ADON) and a Feature Interactive Local-Global Fusion (FILGF) Network. Firstly, ADON includes infrared and visible-light branches. Within the infrared branch, frequency-domain feature decomposition and extraction are employed to isolate Gaussian and stripe noise. In the visible-light branch, Retinex decomposition is applied to extract illumination and reflectance components, enabling complementary enhancement of detail and illumination distribution. Subsequently, FILGF performs interactive multi-scale local-global feature fusion. Local feature fusion consists of intra-inter model feature complement, while global feature fusion is achieved through a interactive cross-model attention. Extensive experiments have shown that DAAF outperforms current IVIF algorithms in normal and complex degradation scenarios.
Via

Apr 15, 2025
Abstract:With the rapid development of information technology, modern warfare increasingly relies on intelligence, making small target detection critical in military applications. The growing demand for efficient, real-time detection has created challenges in identifying small targets in complex environments due to interference. To address this, we propose a small target detection method based on multi-modal image fusion and attention mechanisms. This method leverages YOLOv5, integrating infrared and visible light data along with a convolutional attention module to enhance detection performance. The process begins with multi-modal dataset registration using feature point matching, ensuring accurate network training. By combining infrared and visible light features with attention mechanisms, the model improves detection accuracy and robustness. Experimental results on anti-UAV and Visdrone datasets demonstrate the effectiveness and practicality of our approach, achieving superior detection results for small and dim targets.
* Accepted by ATC 2024
Via

Mar 24, 2025
Abstract:Image fusion is a crucial technique in the field of computer vision, and its goal is to generate high-quality fused images and improve the performance of downstream tasks. However, existing fusion methods struggle to balance these two factors. Achieving high quality in fused images may result in lower performance in downstream visual tasks, and vice versa. To address this drawback, a novel LVM (large vision model)-guided fusion framework with Object-aware and Contextual COntrastive learning is proposed, termed as OCCO. The pre-trained LVM is utilized to provide semantic guidance, allowing the network to focus solely on fusion tasks while emphasizing learning salient semantic features in form of contrastive learning. Additionally, a novel feature interaction fusion network is also designed to resolve information conflicts in fusion images caused by modality differences. By learning the distinction between positive samples and negative samples in the latent feature space (contextual space), the integrity of target information in fused image is improved, thereby benefiting downstream performance. Finally, compared with eight state-of-the-art methods on four datasets, the effectiveness of the proposed method is validated, and exceptional performance is also demonstrated on downstream visual task.
Via

Mar 30, 2025
Abstract:Compared to images, videos better align with real-world acquisition scenarios and possess valuable temporal cues. However, existing multi-sensor fusion research predominantly integrates complementary context from multiple images rather than videos. This primarily stems from two factors: 1) the scarcity of large-scale multi-sensor video datasets, limiting research in video fusion, and 2) the inherent difficulty of jointly modeling spatial and temporal dependencies in a unified framework. This paper proactively compensates for the dilemmas. First, we construct M3SVD, a benchmark dataset with $220$ temporally synchronized and spatially registered infrared-visible video pairs comprising 153,797 frames, filling the data gap for the video fusion community. Secondly, we propose VideoFusion, a multi-modal video fusion model that fully exploits cross-modal complementarity and temporal dynamics to generate spatio-temporally coherent videos from (potentially degraded) multi-modal inputs. Specifically, 1) a differential reinforcement module is developed for cross-modal information interaction and enhancement, 2) a complete modality-guided fusion strategy is employed to adaptively integrate multi-modal features, and 3) a bi-temporal co-attention mechanism is devised to dynamically aggregate forward-backward temporal contexts to reinforce cross-frame feature representations. Extensive experiments reveal that VideoFusion outperforms existing image-oriented fusion paradigms in sequential scenarios, effectively mitigating temporal inconsistency and interference.
Via

Mar 11, 2025
Abstract:Depth-guided multimodal fusion combines depth information from visible and infrared images, significantly enhancing the performance of 3D reconstruction and robotics applications. Existing thermal-visible image fusion mainly focuses on detection tasks, ignoring other critical information such as depth. By addressing the limitations of single modalities in low-light and complex environments, the depth information from fused images not only generates more accurate point cloud data, improving the completeness and precision of 3D reconstruction, but also provides comprehensive scene understanding for robot navigation, localization, and environmental perception. This supports precise recognition and efficient operations in applications such as autonomous driving and rescue missions. We introduce a text-guided and depth-driven infrared and visible image fusion network. The model consists of an image fusion branch for extracting multi-channel complementary information through a diffusion model, equipped with a text-guided module, and two auxiliary depth estimation branches. The fusion branch uses CLIP to extract semantic information and parameters from depth-enriched image descriptions to guide the diffusion model in extracting multi-channel features and generating fused images. These fused images are then input into the depth estimation branches to calculate depth-driven loss, optimizing the image fusion network. This framework aims to integrate vision-language and depth to directly generate color-fused images from multimodal inputs.
Via

Mar 10, 2025
Abstract:All-in-One Degradation-Aware Fusion Models (ADFMs), a class of multi-modal image fusion models, address complex scenes by mitigating degradations from source images and generating high-quality fused images. Mainstream ADFMs often rely on highly synthetic multi-modal multi-quality images for supervision, limiting their effectiveness in cross-modal and rare degradation scenarios. The inherent relationship among these multi-modal, multi-quality images of the same scene provides explicit supervision for training, but also raises above problems. To address these limitations, we present LURE, a Learning-driven Unified Representation model for infrared and visible Image Fusion, which is degradation-aware. LURE decouples multi-modal multi-quality data at the data level and recouples this relationship in a unified latent feature space (ULFS) by proposing a novel unified loss. This decoupling circumvents data-level limitations of prior models and allows leveraging real-world restoration datasets for training high-quality degradation-aware models, sidestepping above issues. To enhance text-image interaction, we refine image-text interaction and residual structures via Text-Guided Attention (TGA) and an inner residual structure. These enhances text's spatial perception of images and preserve more visual details. Experiments show our method outperforms state-of-the-art (SOTA) methods across general fusion, degradation-aware fusion, and downstream tasks. The code will be publicly available.
Via
