Abstract:Visible and infrared image fusion (VIF) has gained significant attention in recent years due to its wide application in tasks such as scene segmentation and object detection. VIF methods can be broadly classified into traditional VIF methods and application-oriented VIF methods. Traditional methods focus solely on improving the quality of fused images, while application-oriented VIF methods additionally consider the performance of downstream tasks on fused images by introducing task-specific loss terms during training. However, compared to traditional methods, application-oriented VIF methods require datasets labeled for downstream tasks (e.g., semantic segmentation or object detection), making data acquisition labor-intensive and time-consuming. To address this issue, we propose a self-supervised training framework for segmentation-oriented VIF methods (SSVIF). Leveraging the consistency between feature-level fusion-based segmentation and pixel-level fusion-based segmentation, we introduce a novel self-supervised task-cross-segmentation consistency-that enables the fusion model to learn high-level semantic features without the supervision of segmentation labels. Additionally, we design a two-stage training strategy and a dynamic weight adjustment method for effective joint learning within our self-supervised framework. Extensive experiments on public datasets demonstrate the effectiveness of our proposed SSVIF. Remarkably, although trained only on unlabeled visible-infrared image pairs, our SSVIF outperforms traditional VIF methods and rivals supervised segmentation-oriented ones. Our code will be released upon acceptance.
Abstract:Visible and infrared image fusion (VIF) has attracted significant attention in recent years. Traditional VIF methods primarily focus on generating fused images with high visual quality, while recent advancements increasingly emphasize incorporating semantic information into the fusion model during training. However, most existing segmentation-oriented VIF methods adopt a cascade structure comprising separate fusion and segmentation models, leading to increased network complexity and redundancy. This raises a critical question: can we design a more concise and efficient structure to integrate semantic information directly into the fusion model during training-Inspired by multi-task learning, we propose a concise and universal training framework, MultiTaskVIF, for segmentation-oriented VIF models. In this framework, we introduce a multi-task head decoder (MTH) to simultaneously output both the fused image and the segmentation result during training. Unlike previous cascade training frameworks that necessitate joint training with a complete segmentation model, MultiTaskVIF enables the fusion model to learn semantic features by simply replacing its decoder with MTH. Extensive experimental evaluations validate the effectiveness of the proposed method. Our code will be released upon acceptance.