What is Face Swapping? Face swapping is the process of replacing one person's face with another person's face in an image or video.
Papers and Code
Jun 13, 2025
Abstract:The widespread emergence of face-swap Deepfake videos poses growing risks to digital security, privacy, and media integrity, necessitating effective forensic tools for identifying the source of such manipulations. Although most prior research has focused primarily on binary Deepfake detection, the task of model attribution -- determining which generative model produced a given Deepfake -- remains underexplored. In this paper, we introduce FAME (Fake Attribution via Multilevel Embeddings), a lightweight and efficient spatio-temporal framework designed to capture subtle generative artifacts specific to different face-swap models. FAME integrates spatial and temporal attention mechanisms to improve attribution accuracy while remaining computationally efficient. We evaluate our model on three challenging and diverse datasets: Deepfake Detection and Manipulation (DFDM), FaceForensics++, and FakeAVCeleb. Results show that FAME consistently outperforms existing methods in both accuracy and runtime, highlighting its potential for deployment in real-world forensic and information security applications.
Via

May 27, 2025
Abstract:The increasing demand for large-scale visual data, coupled with strict privacy regulations, has driven research into anonymization methods that hide personal identities without seriously degrading data quality. In this paper, we explore the potential of face swapping methods to preserve privacy in video data. Through extensive evaluations focusing on temporal consistency, anonymity strength, and visual fidelity, we find that face swapping techniques can produce consistent facial transitions and effectively hide identities. These results underscore the suitability of face swapping for privacy-preserving video applications and lay the groundwork for future advancements in anonymization focused face-swapping models.
* Accepted to the 2025 25th International Conference on Digital Signal
Processing (DSP 2025)
Via

May 25, 2025
Abstract:Face swapping, recognized as a privacy and security concern, has prompted considerable defensive research. With the advancements in AI-generated content, the discrepancies between the real and swapped faces have become nuanced. Considering the difficulty of forged traces detection, we shift the focus to the face swapping purpose and proactively embed elaborate watermarks against unknown face swapping techniques. Given that the constant purpose is to swap the original face identity while preserving the background, we concentrate on the regions surrounding the face to ensure robust watermark generation, while embedding the contour texture and face identity information to achieve progressive image determination. The watermark is located in the facial contour and contains hybrid messages, dubbed the contour-hybrid watermark (CMark). Our approach generalizes face swapping detection without requiring any swapping techniques during training and the storage of large-scale messages in advance. Experiments conducted across 8 face swapping techniques demonstrate the superiority of our approach compared with state-of-the-art passive and proactive detectors while achieving a favorable balance between the image quality and watermark robustness.
* 16 pages, 11 figures, under review
Via

May 26, 2025
Abstract:Securing personal identity against deepfake attacks is increasingly critical in the digital age, especially for celebrities and political figures whose faces are easily accessible and frequently targeted. Most existing deepfake detection methods focus on general-purpose scenarios and often ignore the valuable prior knowledge of known facial identities, e.g., "VIP individuals" whose authentic facial data are already available. In this paper, we propose \textbf{VIPGuard}, a unified multimodal framework designed to capture fine-grained and comprehensive facial representations of a given identity, compare them against potentially fake or similar-looking faces, and reason over these comparisons to make accurate and explainable predictions. Specifically, our framework consists of three main stages. First, fine-tune a multimodal large language model (MLLM) to learn detailed and structural facial attributes. Second, we perform identity-level discriminative learning to enable the model to distinguish subtle differences between highly similar faces, including real and fake variations. Finally, we introduce user-specific customization, where we model the unique characteristics of the target face identity and perform semantic reasoning via MLLM to enable personalized and explainable deepfake detection. Our framework shows clear advantages over previous detection works, where traditional detectors mainly rely on low-level visual cues and provide no human-understandable explanations, while other MLLM-based models often lack a detailed understanding of specific face identities. To facilitate the evaluation of our method, we built a comprehensive identity-aware benchmark called \textbf{VIPBench} for personalized deepfake detection, involving the latest 7 face-swapping and 7 entire face synthesis techniques for generation.
Via

May 21, 2025
Abstract:The proliferation of diffusion-based deepfake technologies poses significant risks for unauthorized and unethical facial image manipulation. While traditional countermeasures have primarily focused on passive detection methods, this paper introduces a novel proactive defense strategy through adversarial attacks that preemptively protect facial images from being exploited by diffusion-based deepfake systems. Existing adversarial protection methods predominantly target conventional generative architectures (GANs, AEs, VAEs) and fail to address the unique challenges presented by diffusion models, which have become the predominant framework for high-quality facial deepfakes. Current diffusion-specific adversarial approaches are limited by their reliance on specific model architectures and weights, rendering them ineffective against the diverse landscape of diffusion-based deepfake implementations. Additionally, they typically employ global perturbation strategies that inadequately address the region-specific nature of facial manipulation in deepfakes.
Via

May 22, 2025
Abstract:In recent years, the rapid development of deepfake technology has given rise to an emerging and serious threat to public security: diffusion model-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency through multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the first large-scale multimodal digital human forgery dataset based on diffusion models. Employing five latest digital human generation methods (Sonic, Hallo, etc.) and voice cloning method, we systematically produce a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies show that the confusion rate between forged and real videos reaches 68%, and existing state-of-the-art (SOTA) detection models exhibit large drops in AUC values on DigiFakeAV, highlighting the challenge of the dataset. To address this problem, we further propose DigiShield, a detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves SOTA performance on both the DigiFakeAV and DF-TIMIT datasets. Experiments show that this method effectively identifies covert artifacts through fine-grained analysis of the temporal evolution of facial features in synthetic videos.
Via

May 21, 2025
Abstract:The rapid emergence of multimodal deepfakes (visual and auditory content are manipulated in concert) undermines the reliability of existing detectors that rely solely on modality-specific artifacts or cross-modal inconsistencies. In this work, we first demonstrate that modality-specific forensic traces (e.g., face-swap artifacts or spectral distortions) and modality-shared semantic misalignments (e.g., lip-speech asynchrony) offer complementary evidence, and that neglecting either aspect limits detection performance. Existing approaches either naively fuse modality-specific features without reconciling their conflicting characteristics or focus predominantly on semantic misalignment at the expense of modality-specific fine-grained artifact cues. To address these shortcomings, we propose a general multimodal framework for video deepfake detection via Cross-Modal Alignment and Distillation (CAD). CAD comprises two core components: 1) Cross-modal alignment that identifies inconsistencies in high-level semantic synchronization (e.g., lip-speech mismatches); 2) Cross-modal distillation that mitigates feature conflicts during fusion while preserving modality-specific forensic traces (e.g., spectral distortions in synthetic audio). Extensive experiments on both multimodal and unimodal (e.g., image-only/video-only)deepfake benchmarks demonstrate that CAD significantly outperforms previous methods, validating the necessity of harmonious integration of multimodal complementary information.
Via

May 14, 2025
Abstract:Deepfake technology poses increasing risks such as privacy invasion and identity theft. To address these threats, we propose WaveGuard, a proactive watermarking framework that enhances robustness and imperceptibility via frequency-domain embedding and graph-based structural consistency. Specifically, we embed watermarks into high-frequency sub-bands using Dual-Tree Complex Wavelet Transform (DT-CWT) and employ a Structural Consistency Graph Neural Network (SC-GNN) to preserve visual quality. We also design an attention module to refine embedding precision. Experimental results on face swap and reenactment tasks demonstrate that WaveGuard outperforms state-of-the-art methods in both robustness and visual quality. Code is available at https://github.com/vpsg-research/WaveGuard.
* 11 pages, 5 figures, 4 tables
Via

May 21, 2025
Abstract:Change detection, a critical task in remote sensing and computer vision, aims to identify pixel-level differences between image pairs captured at the same geographic area but different times. It faces numerous challenges such as illumination variation, seasonal changes, background interference, and shooting angles, especially with a large time gap between images. While current methods have advanced, they often overlook temporal dependencies and overemphasize prominent changes while ignoring subtle but equally important changes. To address these limitations, we introduce \textbf{CEBSNet}, a novel change-excited and background-suppressed network with temporal dependency modeling for change detection. During the feature extraction, we utilize a simple Channel Swap Module (CSM) to model temporal dependency, reducing differences and noise. The Feature Excitation and Suppression Module (FESM) is developed to capture both obvious and subtle changes, maintaining the integrity of change regions. Additionally, we design a Pyramid-Aware Spatial-Channel Attention module (PASCA) to enhance the ability to detect change regions at different sizes and focus on critical regions. We conduct extensive experiments on three common street view datasets and two remote sensing datasets, and our method achieves the state-of-the-art performance.
Via

Apr 20, 2025
Abstract:In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
Via
