Abstract:The widespread emergence of face-swap Deepfake videos poses growing risks to digital security, privacy, and media integrity, necessitating effective forensic tools for identifying the source of such manipulations. Although most prior research has focused primarily on binary Deepfake detection, the task of model attribution -- determining which generative model produced a given Deepfake -- remains underexplored. In this paper, we introduce FAME (Fake Attribution via Multilevel Embeddings), a lightweight and efficient spatio-temporal framework designed to capture subtle generative artifacts specific to different face-swap models. FAME integrates spatial and temporal attention mechanisms to improve attribution accuracy while remaining computationally efficient. We evaluate our model on three challenging and diverse datasets: Deepfake Detection and Manipulation (DFDM), FaceForensics++, and FakeAVCeleb. Results show that FAME consistently outperforms existing methods in both accuracy and runtime, highlighting its potential for deployment in real-world forensic and information security applications.
Abstract:Although deep learning has demonstrated remarkable capabilities in learning from unstructured data, modern tree-based ensemble models remain superior in extracting relevant information and learning from structured datasets. While several efforts have been made to accelerate tree-based models, the inherent characteristics of the models pose significant challenges for conventional accelerators. Recent research leveraging content-addressable memory (CAM) offers a promising solution for accelerating tree-based models, yet existing designs suffer from excessive memory consumption and low utilization. This work addresses these challenges by introducing RETENTION, an end-to-end framework that significantly reduces CAM capacity requirement for tree-based model inference. We propose an iterative pruning algorithm with a novel pruning criterion tailored for bagging-based models (e.g., Random Forest), which minimizes model complexity while ensuring controlled accuracy degradation. Additionally, we present a tree mapping scheme that incorporates two innovative data placement strategies to alleviate the memory redundancy caused by the widespread use of don't care states in CAM. Experimental results show that implementing the tree mapping scheme alone achieves $1.46\times$ to $21.30 \times$ better space efficiency, while the full RETENTION framework yields $4.35\times$ to $207.12\times$ improvement with less than 3% accuracy loss. These results demonstrate that RETENTION is highly effective in reducing CAM capacity requirement, providing a resource-efficient direction for tree-based model acceleration.
Abstract:The proliferation of deepfake videos, synthetic media produced through advanced Artificial Intelligence techniques has raised significant concerns across various sectors, encompassing realms such as politics, entertainment, and security. In response, this research introduces an innovative and streamlined model designed to classify deepfake videos generated by five distinct encoders adeptly. Our approach not only achieves state of the art performance but also optimizes computational resources. At its core, our solution employs part of a VGG19bn as a backbone to efficiently extract features, a strategy proven effective in image-related tasks. We integrate a Capsule Network coupled with a Spatial Temporal attention mechanism to bolster the model's classification capabilities while conserving resources. This combination captures intricate hierarchies among features, facilitating robust identification of deepfake attributes. Delving into the intricacies of our innovation, we introduce an existing video level fusion technique that artfully capitalizes on temporal attention mechanisms. This mechanism serves to handle concatenated feature vectors, capitalizing on the intrinsic temporal dependencies embedded within deepfake videos. By aggregating insights across frames, our model gains a holistic comprehension of video content, resulting in more precise predictions. Experimental results on an extensive benchmark dataset of deepfake videos called DFDM showcase the efficacy of our proposed method. Notably, our approach achieves up to a 4 percent improvement in accurately categorizing deepfake videos compared to baseline models, all while demanding fewer computational resources.