Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of tasks, but their deployment is often constrained by substantial memory footprints and computational costs. While prior work has achieved significant progress in compressing and accelerating linear layers, nonlinear layers-such as SiLU, RMSNorm, and Softmax-still heavily depend on high-precision floating-point operations. In this paper, we propose a calibration-free, dynamic-programming-optimal, and hardware-friendly framework called Non-uniform Linear Interpolation (NLI). NLI is capable of efficiently approximating a variety of nonlinear functions, enabling seamless integration into LLMs and other deep neural networks with almost no loss in accuracy. NLI ingeniously recasts cutpoint selection as a dynamic-programming problem, achieving the globally minimal interpolation error in O(MxN2) time via Bellman's optimality principle. Based on the NLI algorithm, we also design and implement a plug-and-play universal nonlinear computation unit. Hardware experiments demonstrate that the NLI Engine achieves more than 4x improvement in computational efficiency compared to the state-of-the-art designs.
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
We propose a novel independent and payoff-based learning framework for stochastic games that is model-free, game-agnostic, and gradient-free. The learning dynamics follow a best-response-type actor-critic architecture, where agents update their strategies (actors) using feedback from two distinct critics: a fast critic that intuitively responds to observed payoffs under limited information, and a slow critic that deliberatively approximates the solution to the underlying dynamic programming problem. Crucially, the learning process relies on non-equilibrium adaptation through smoothed best responses to observed payoffs. We establish convergence to (approximate) equilibria in two-agent zero-sum and multi-agent identical-interest stochastic games over an infinite horizon. This provides one of the first payoff-based and fully decentralized learning algorithms with theoretical guarantees in both settings. Empirical results further validate the robustness and effectiveness of the proposed approach across both classes of games.
Efficient planning of assembly motions is a long standing challenge in the field of robotics that has been primarily tackled with reinforcement learning and sampling-based methods by using extensive physics simulations. This paper proposes a sample-efficient robust optimal control approach for the determination of assembly motions, which requires significantly less physics simulation steps during planning through the efficient use of derivative information. To this end, a differentiable physics simulation is constructed that provides second-order analytic derivatives to the numerical solver and allows one to traverse seamlessly from informative derivatives to accurate contact simulation. The solution of the physics simulation problem is made differentiable by using smoothing inspired by interior-point methods applied to both the collision detection as well as the contact resolution problem. We propose a modified variant of an optimization-based formulation of collision detection formulated as a linear program and present an efficient implementation for the nominal evaluation and corresponding first- and second-order derivatives. Moreover, a multi-scenario-based trajectory optimization problem that ensures robustness with respect to sim-to-real mismatches is derived. The capability of the considered formulation is illustrated by results where over 99\% successful executions are achieved in real-world experiments. Thereby, we carefully investigate the effect of smooth approximations of the contact dynamics and robust modeling on the success rates. Furthermore, the method's capability is tested on different peg-in-hole problems in simulation to show the benefit of using exact Hessians over commonly used Hessian approximations.
We study privacy amplification for differentially private model training with matrix factorization under random allocation (also known as the balls-in-bins model). Recent work by Choquette-Choo et al. (2025) proposes a sampling-based Monte Carlo approach to compute amplification parameters in this setting. However, their guarantees either only hold with some high probability or require random abstention by the mechanism. Furthermore, the required number of samples for ensuring $(ε,δ)$-DP is inversely proportional to $δ$. In contrast, we develop sampling-free bounds based on Rényi divergence and conditional composition. The former is facilitated by a dynamic programming formulation to efficiently compute the bounds. The latter complements it by offering stronger privacy guarantees for small $ε$, where Rényi divergence bounds inherently lead to an over-approximation. Our framework applies to arbitrary banded and non-banded matrices. Through numerical comparisons, we demonstrate the efficacy of our approach across a broad range of matrix mechanisms used in research and practice.
Battery energy storage systems are increasingly deployed as fast-responding resources for grid balancing services such as frequency regulation and for mitigating renewable generation uncertainty. However, repeated charging and discharging induces cycling degradation and reduces battery lifetime. This paper studies the real-time scheduling of a heterogeneous battery fleet that collectively tracks a stochastic balancing signal subject to per-battery ramp-rate and capacity constraints, while minimizing long-term cycling degradation. Cycling degradation is fundamentally path-dependent: it is determined by charge-discharge cycles formed by the state-of-charge (SoC) trajectory and is commonly quantified via rainflow cycle counting. This non-Markovian structure makes it difficult to express degradation as an additive per-time-step cost, complicating classical dynamic programming approaches. We address this challenge by formulating the fleet scheduling problem as a Markov decision process (MDP) with constrained action space and designing a dense proxy reward that provides informative feedback at each time step while remaining aligned with long-term cycle-depth reduction. To scale learning to large state-action spaces induced by fine-grained SoC discretization and asymmetric per-battery constraints, we develop a function-approximation reinforcement learning method using an Extreme Learning Machine (ELM) as a random nonlinear feature map combined with linear temporal-difference learning. We evaluate the proposed approach on a toy Markovian signal model and on a Markovian model trained from real-world regulation signal traces obtained from the University of Delaware, and demonstrate consistent reductions in cycle-depth occurrence and degradation metrics compared to baseline scheduling policies.
The autoregressive video diffusion model has recently gained considerable research interest due to its causal modeling and iterative denoising. In this work, we identify that the multi-head self-attention in these models under-utilizes historical frames: approximately 25% heads attend almost exclusively to the current frame, and discarding their KV caches incurs only minor performance degradation. Building upon this, we propose Dummy Forcing, a simple yet effective method to control context accessibility across different heads. Specifically, the proposed heterogeneous memory allocation reduces head-wise context redundancy, accompanied by dynamic head programming to adaptively classify head types. Moreover, we develop a context packing technique to achieve more aggressive cache compression. Without additional training, our Dummy Forcing delivers up to 2.0x speedup over the baseline, supporting video generation at 24.3 FPS with less than 0.5% quality drop. Project page is available at https://csguoh.github.io/project/DummyForcing/.
Markov decision problems are most commonly solved via dynamic programming. Another approach is Bellman residual minimization, which directly minimizes the squared Bellman residual objective function. However, compared to dynamic programming, this approach has received relatively less attention, mainly because it is often less efficient in practice and can be more difficult to extend to model-free settings such as reinforcement learning. Nonetheless, Bellman residual minimization has several advantages that make it worth investigating, such as more stable convergence with function approximation for value functions. While Bellman residual methods for policy evaluation have been widely studied, methods for policy optimization (control tasks) have been scarcely explored. In this paper, we establish foundational results for the control Bellman residual minimization for policy optimization.
In this paper, we develop unrolled neural networks to solve constrained optimization problems, offering accelerated, learnable counterparts to dual ascent (DA) algorithms. Our framework, termed constrained dual unrolling (CDU), comprises two coupled neural networks that jointly approximate the saddle point of the Lagrangian. The primal network emulates an iterative optimizer that finds a stationary point of the Lagrangian for a given dual multiplier, sampled from an unknown distribution. The dual network generates trajectories towards the optimal multipliers across its layers while querying the primal network at each layer. Departing from standard unrolling, we induce DA dynamics by imposing primal-descent and dual-ascent constraints through constrained learning. We formulate training the two networks as a nested optimization problem and propose an alternating procedure that updates the primal and dual networks in turn, mitigating uncertainty in the multiplier distribution required for primal network training. We numerically evaluate the framework on mixed-integer quadratic programs (MIQPs) and power allocation in wireless networks. In both cases, our approach yields near-optimal near-feasible solutions and exhibits strong out-of-distribution (OOD) generalization.
Solving optimal control problems (OCPs) of autonomous agents operating under spatial and temporal constraints fast and accurately is essential in applications ranging from eco-driving of autonomous vehicles to quadrotor navigation. However, the nonlinear programs approximating the OCPs are inherently nonconvex due to the coupling between the dynamics and the event timing, and therefore, they are challenging to solve. Most approaches address this challenge by predefining waypoint times or just using nonconvex trajectory optimization, which simplifies the problem but often yields suboptimal solutions. To significantly improve the numerical properties, we propose a formulation with a time-scaling direct multiple shooting scheme that partitions the prediction horizon into segments aligned with characteristic time constraints. Moreover, we develop a fast semidefinite-programming-based convex relaxation that exploits the sparsity pattern of the lifted formulation. Comprehensive simulation studies demonstrate the solution optimality and computational efficiency. Furthermore, real-world experiments on a quadrotor waypoint flight task with constrained open time windows validate the practical applicability of the approach in complex environments.