Abstract:Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
Abstract:The target network update frequency (TUF) is a central stabilization mechanism in (deep) Q-learning. However, their selection remains poorly understood and is often treated merely as another tunable hyperparameter rather than as a principled design decision. This work provides a theoretical analysis of target fixing in tabular Q-learning through the lens of approximate dynamic programming. We formulate periodic target updates as a nested optimization scheme in which each outer iteration applies an inexact Bellman optimality operator, approximated by a generic inner loop optimizer. Rigorous theory yields a finite-time convergence analysis for the asynchronous sampling setting, specializing to stochastic gradient descent in the inner loop. Our results deliver an explicit characterization of the bias-variance trade-off induced by the target update period, showing how to optimally set this critical hyperparameter. We prove that constant target update schedules are suboptimal, incurring a logarithmic overhead in sample complexity that is entirely avoidable with adaptive schedules. Our analysis shows that the optimal target update frequency increases geometrically over the course of the learning process.
Abstract:Bias problems in the estimation of $Q$-values are a well-known obstacle that slows down convergence of $Q$-learning and actor-critic methods. One of the reasons of the success of modern RL algorithms is partially a direct or indirect overestimation reduction mechanism. We propose an easy to implement method built on top of distributional reinforcement learning (DRL) algorithms to deal with the overestimation in a locally adaptive way. Our framework is simple to implement, existing distributional algorithms can be improved with a few lines of code. We provide theoretical evidence and use double $Q$-learning to show how to include locally adaptive overestimation control in existing algorithms. Experiments are provided for tabular, Atari, and MuJoCo environments.