Abstract:In reinforcement learning (RL), Q-learning is a fundamental algorithm whose convergence is guaranteed in the tabular setting. However, this convergence guarantee does not hold under linear function approximation. To overcome this limitation, a significant line of research has introduced regularization techniques to ensure stable convergence under function approximation. In this work, we propose a new algorithm, periodic regularized Q-learning (PRQ). We first introduce regularization at the level of the projection operator and explicitly construct a regularized projected value iteration (RP-VI), subsequently extending it to a sample-based RL algorithm. By appropriately regularizing the projection operator, the resulting projected value iteration becomes a contraction. By extending this regularized projection into the stochastic setting, we establish the PRQ algorithm and provide a rigorous theoretical analysis that proves finite-time convergence guarantees for PRQ under linear function approximation.
Abstract:Markov decision problems are most commonly solved via dynamic programming. Another approach is Bellman residual minimization, which directly minimizes the squared Bellman residual objective function. However, compared to dynamic programming, this approach has received relatively less attention, mainly because it is often less efficient in practice and can be more difficult to extend to model-free settings such as reinforcement learning. Nonetheless, Bellman residual minimization has several advantages that make it worth investigating, such as more stable convergence with function approximation for value functions. While Bellman residual methods for policy evaluation have been widely studied, methods for policy optimization (control tasks) have been scarcely explored. In this paper, we establish foundational results for the control Bellman residual minimization for policy optimization.