Abstract:Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
Abstract:We propose a data-driven heuristic for NP-hard Ising and Max-Cut optimization that learns the update rule of an iterative dynamical system. The method learns a shared, node-wise update rule that maps local interaction fields to spin updates, parameterized by a compact multilayer perceptron with a small number of parameters. Training is performed using a zeroth-order optimizer, since backpropagation through long, recurrent Ising-machine dynamics leads to unstable and poorly informative gradients. We call this approach a neural network parameterized Ising machine (NPIM). Despite its low parameter count, the learned dynamics recover effective algorithmic structure, including momentum-like behavior and time-varying schedules, enabling efficient search in highly non-convex energy landscapes. Across standard Ising and neural combinatorial optimization benchmarks, NPIM achieves competitive solution quality and time-to-solution relative to recent learning-based methods and strong classical Ising-machine heuristics.
Abstract:We propose a novel algorithm that extends the methods of ball smoothing and Gaussian smoothing for noisy derivative-free optimization by accounting for the heterogeneous curvature of the objective function. The algorithm dynamically adapts the shape of the smoothing kernel to approximate the Hessian of the objective function around a local optimum. This approach significantly reduces the error in estimating the gradient from noisy evaluations through sampling. We demonstrate the efficacy of our method through numerical experiments on artificial problems. Additionally, we show improved performance when tuning NP-hard combinatorial optimization solvers compared to existing state-of-the-art heuristic derivative-free and Bayesian optimization methods.