Topic:3D Object Detection
What is 3D Object Detection? 3D object detection is a task in computer vision where the goal is to identify and locate objects in a 3D environment based on their shape, location, and orientation. It involves detecting the presence of objects and determining their location in the 3D space in real time. This task is crucial for applications such as autonomous vehicles, robotics, and augmented reality.
Papers and Code
Aug 12, 2025
Abstract:End-to-end models are emerging as the mainstream in autonomous driving perception and planning. However, the lack of explicit supervision signals for intermediate functional modules leads to opaque operational mechanisms and limited interpretability, making it challenging for traditional methods to independently evaluate and train these modules. Pioneering in the issue, this study builds upon the feature map-truth representation similarity-based evaluation framework and proposes an independent evaluation method based on Feature Map Convergence Score (FMCS). A Dual-Granularity Dynamic Weighted Scoring System (DG-DWSS) is constructed, formulating a unified quantitative metric - Feature Map Quality Score - to enable comprehensive evaluation of the quality of feature maps generated by functional modules. A CLIP-based Feature Map Quality Evaluation Network (CLIP-FMQE-Net) is further developed, combining feature-truth encoders and quality score prediction heads to enable real-time quality analysis of feature maps generated by functional modules. Experimental results on the NuScenes dataset demonstrate that integrating our evaluation module into the training improves 3D object detection performance, achieving a 3.89 percent gain in NDS. These results verify the effectiveness of our method in enhancing feature representation quality and overall model performance.
Via

Aug 12, 2025
Abstract:Vision transformers (ViTs) have recently been widely applied to 3D point cloud understanding, with masked autoencoding as the predominant pre-training paradigm. However, the challenge of learning dense and informative semantic features from point clouds via standard ViTs remains underexplored. We propose MaskClu, a novel unsupervised pre-training method for ViTs on 3D point clouds that integrates masked point modeling with clustering-based learning. MaskClu is designed to reconstruct both cluster assignments and cluster centers from masked point clouds, thus encouraging the model to capture dense semantic information. Additionally, we introduce a global contrastive learning mechanism that enhances instance-level feature learning by contrasting different masked views of the same point cloud. By jointly optimizing these complementary objectives, i.e., dense semantic reconstruction, and instance-level contrastive learning. MaskClu enables ViTs to learn richer and more semantically meaningful representations from 3D point clouds. We validate the effectiveness of our method via multiple 3D tasks, including part segmentation, semantic segmentation, object detection, and classification, where MaskClu sets new competitive results. The code and models will be released at:https://github.com/Amazingren/maskclu.
* 3D point cloud pretraining method. 8 pages in the main manuscript
Via

Aug 11, 2025
Abstract:Bird's Eye View (BEV) perception systems based on multi-sensor feature fusion have become a fundamental cornerstone for end-to-end autonomous driving. However, existing multi-modal BEV methods commonly suffer from limited input adaptability, constrained modeling capacity, and suboptimal generalization. To address these challenges, we propose a hierarchically decoupled Mixture-of-Experts architecture at the functional module level, termed Computing Brain DEvelopment System Mixture-of-Experts (CBDES MoE). CBDES MoE integrates multiple structurally heterogeneous expert networks with a lightweight Self-Attention Router (SAR) gating mechanism, enabling dynamic expert path selection and sparse, input-aware efficient inference. To the best of our knowledge, this is the first modular Mixture-of-Experts framework constructed at the functional module granularity within the autonomous driving domain. Extensive evaluations on the real-world nuScenes dataset demonstrate that CBDES MoE consistently outperforms fixed single-expert baselines in 3D object detection. Compared to the strongest single-expert model, CBDES MoE achieves a 1.6-point increase in mAP and a 4.1-point improvement in NDS, demonstrating the effectiveness and practical advantages of the proposed approach.
Via

Aug 11, 2025
Abstract:The goal of multimodal image fusion is to integrate complementary information from infrared and visible images, generating multimodal fused images for downstream tasks. Existing downstream pre-training models are typically trained on visible images. However, the significant pixel distribution differences between visible and multimodal fusion images can degrade downstream task performance, sometimes even below that of using only visible images. This paper explores adapting multimodal fused images with significant modality differences to object detection and semantic segmentation models trained on visible images. To address this, we propose MambaTrans, a novel multimodal fusion image modality translator. MambaTrans uses descriptions from a multimodal large language model and masks from semantic segmentation models as input. Its core component, the Multi-Model State Space Block, combines mask-image-text cross-attention and a 3D-Selective Scan Module, enhancing pure visual capabilities. By leveraging object detection prior knowledge, MambaTrans minimizes detection loss during training and captures long-term dependencies among text, masks, and images. This enables favorable results in pre-trained models without adjusting their parameters. Experiments on public datasets show that MambaTrans effectively improves multimodal image performance in downstream tasks.
Via

Aug 11, 2025
Abstract:This paper introduces an advanced AI-driven perception system for autonomous quadcopter navigation in GPS-denied indoor environments. The proposed framework leverages cloud computing to offload computationally intensive tasks and incorporates a custom-designed printed circuit board (PCB) for efficient sensor data acquisition, enabling robust navigation in confined spaces. The system integrates YOLOv11 for object detection, Depth Anything V2 for monocular depth estimation, a PCB equipped with Time-of-Flight (ToF) sensors and an Inertial Measurement Unit (IMU), and a cloud-based Large Language Model (LLM) for context-aware decision-making. A virtual safety envelope, enforced by calibrated sensor offsets, ensures collision avoidance, while a multithreaded architecture achieves low-latency processing. Enhanced spatial awareness is facilitated by 3D bounding box estimation with Kalman filtering. Experimental results in an indoor testbed demonstrate strong performance, with object detection achieving a mean Average Precision (mAP50) of 0.6, depth estimation Mean Absolute Error (MAE) of 7.2 cm, only 16 safety envelope breaches across 42 trials over approximately 11 minutes, and end-to-end system latency below 1 second. This cloud-supported, high-intelligence framework serves as an auxiliary perception and navigation system, complementing state-of-the-art drone autonomy for GPS-denied confined spaces.
Via

Aug 11, 2025
Abstract:Multi-object tracking (MOT) in monocular videos is fundamentally challenged by occlusions and depth ambiguity, issues that conventional tracking-by-detection (TBD) methods struggle to resolve owing to a lack of geometric awareness. To address these limitations, we introduce GRASPTrack, a novel depth-aware MOT framework that integrates monocular depth estimation and instance segmentation into a standard TBD pipeline to generate high-fidelity 3D point clouds from 2D detections, thereby enabling explicit 3D geometric reasoning. These 3D point clouds are then voxelized to enable a precise and robust Voxel-Based 3D Intersection-over-Union (IoU) for spatial association. To further enhance tracking robustness, our approach incorporates Depth-aware Adaptive Noise Compensation, which dynamically adjusts the Kalman filter process noise based on occlusion severity for more reliable state estimation. Additionally, we propose a Depth-enhanced Observation-Centric Momentum, which extends the motion direction consistency from the image plane into 3D space to improve motion-based association cues, particularly for objects with complex trajectories. Extensive experiments on the MOT17, MOT20, and DanceTrack benchmarks demonstrate that our method achieves competitive performance, significantly improving tracking robustness in complex scenes with frequent occlusions and intricate motion patterns.
Via

Aug 09, 2025
Abstract:We introduce ForeSight, a novel joint detection and forecasting framework for vision-based 3D perception in autonomous vehicles. Traditional approaches treat detection and forecasting as separate sequential tasks, limiting their ability to leverage temporal cues. ForeSight addresses this limitation with a multi-task streaming and bidirectional learning approach, allowing detection and forecasting to share query memory and propagate information seamlessly. The forecast-aware detection transformer enhances spatial reasoning by integrating trajectory predictions from a multiple hypothesis forecast memory queue, while the streaming forecast transformer improves temporal consistency using past forecasts and refined detections. Unlike tracking-based methods, ForeSight eliminates the need for explicit object association, reducing error propagation with a tracking-free model that efficiently scales across multi-frame sequences. Experiments on the nuScenes dataset show that ForeSight achieves state-of-the-art performance, achieving an EPA of 54.9%, surpassing previous methods by 9.3%, while also attaining the best mAP and minADE among multi-view detection and forecasting models.
* Accepted to ICCV 2025
Via

Aug 06, 2025
Abstract:We present BEVCon, a simple yet effective contrastive learning framework designed to improve Bird's Eye View (BEV) perception in autonomous driving. BEV perception offers a top-down-view representation of the surrounding environment, making it crucial for 3D object detection, segmentation, and trajectory prediction tasks. While prior work has primarily focused on enhancing BEV encoders and task-specific heads, we address the underexplored potential of representation learning in BEV models. BEVCon introduces two contrastive learning modules: an instance feature contrast module for refining BEV features and a perspective view contrast module that enhances the image backbone. The dense contrastive learning designed on top of detection losses leads to improved feature representations across both the BEV encoder and the backbone. Extensive experiments on the nuScenes dataset demonstrate that BEVCon achieves consistent performance gains, achieving up to +2.4% mAP improvement over state-of-the-art baselines. Our results highlight the critical role of representation learning in BEV perception and offer a complementary avenue to conventional task-specific optimizations.
* IEEE Robotics and Automation Letters (Volume: 10, Issue: 4, April
2025)
Via

Aug 07, 2025
Abstract:Visual pedestrian tracking represents a promising research field, with extensive applications in intelligent surveillance, behavior analysis, and human-computer interaction. However, real-world applications face significant occlusion challenges. When multiple pedestrians interact or overlap, the loss of target features severely compromises the tracker's ability to maintain stable trajectories. Traditional tracking methods, which typically rely on full-body bounding box features extracted from {Re-ID} models and linear constant-velocity motion assumptions, often struggle in severe occlusion scenarios. To address these limitations, this work proposes an enhanced tracking framework that leverages richer feature representations and a more robust motion model. Specifically, the proposed method incorporates detection features from both the regression and classification branches of an object detector, embedding spatial and positional information directly into the feature representations. To further mitigate occlusion challenges, a head keypoint detection model is introduced, as the head is less prone to occlusion compared to the full body. In terms of motion modeling, we propose an iterative Kalman filtering approach designed to align with modern detector assumptions, integrating 3D priors to better complete motion trajectories in complex scenes. By combining these advancements in appearance and motion modeling, the proposed method offers a more robust solution for multi-object tracking in crowded environments where occlusions are prevalent.
Via

Aug 01, 2025
Abstract:Recent advancements in LiDAR-based 3D object detection have significantly accelerated progress toward the realization of fully autonomous driving in real-world environments. Despite achieving high detection performance, most of the approaches still rely on a VGG-based or ResNet-based backbone for feature exploration, which increases the model complexity. Lightweight backbone design is well-explored for 2D object detection, but research on 3D object detection still remains limited. In this work, we introduce Dense Backbone, a lightweight backbone that combines the benefits of high processing speed, lightweight architecture, and robust detection accuracy. We adapt multiple SoTA 3d object detectors, such as PillarNet, with our backbone and show that with our backbone, these models retain most of their detection capability at a significantly reduced computational cost. To our knowledge, this is the first dense-layer-based backbone tailored specifically for 3D object detection from point cloud data. DensePillarNet, our adaptation of PillarNet, achieves a 29% reduction in model parameters and a 28% reduction in latency with just a 2% drop in detection accuracy on the nuScenes test set. Furthermore, Dense Backbone's plug-and-play design allows straightforward integration into existing architectures, requiring no modifications to other network components.
* accepted at the Embedded Vision Workshop ICCV 2025
Via
