Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to acquire increasingly complex reasoning and agentic behaviors. In this work, we propose two simple techniques to improve policy gradient algorithms for LLMs. First, we replace the fixed anchor policy during RL with an Exponential Moving Average (EMA), similar to a target network in deep Q-learning. Second, we introduce Top-k KL estimator, which allows for flexible interpolation between exact KL and sampled KL. We derive the stability conditions for using EMA anchor; moreover, we show that our Top-k KL estimator yields both unbiased KL values and unbiased gradients at any k, while bringing the benefits of exact KL. When combined with GRPO, the two techniques (EMA-PG) lead to a significant performance boost. On math reasoning, it allows R1-distilled Qwen-1.5B to reach 53.9% on OlympiadBench compared to 50.8% by GRPO. On agentic RL domains, with Qwen-3B base, EMA-PG improves GRPO by an average of 33.3% across 7 datasets of Q&A with search engines, including 29.7% $\rightarrow$ 44.1% on HotpotQA, 27.4% $\rightarrow$ 40.1% on 2WikiMultiHopQA. Overall, we show that EMA-PG is a simple, principled, and powerful approach to scaling RL for LLMs. Code: https://github.com/LunjunZhang/ema-pg
Small Language Models (SLMs) are attractive for cost-sensitive and resource-limited settings due to their efficient, low-latency inference. However, they often struggle with complex, knowledge-intensive tasks that require structured reasoning and effective retrieval. To address these limitations, we propose FutureMind, a modular reasoning framework that equips SLMs with strategic thinking-pattern priors via adaptive knowledge distillation from large language models (LLMs). FutureMind introduces a dynamic reasoning pipeline composed of four key modules: Problem Analysis, Logical Reasoning, Strategy Planning, and Retrieval Guidance. This pipeline is augmented by three distinct retrieval paradigms that decompose complex queries into tractable subproblems, ensuring efficient and accurate retrieval execution. Extensive experiments on multi-hop QA benchmarks, including 2WikiMultihopQA, MuSiQue, Bamboogle, and Frames, demonstrate the superiority of FutureMind. It consistently outperforms strong baselines such as Search-o1, achieving state-of-the-art results under free training conditions across diverse SLM architectures and scales. Beyond empirical gains, our analysis reveals that the process of thinking-pattern distillation is restricted by the cognitive bias bottleneck between the teacher (LLMs) and student (SLMs) models. This provides new perspectives on the transferability of reasoning skills, paving the way for the development of SLMs that combine efficiency with genuine cognitive capability.
Graph Retrieval-Augmented Generation (Graph-RAG) enhances multihop question answering by organizing corpora into knowledge graphs and routing evidence through relational structure. However, practical deployments face two persistent bottlenecks: (i) mixed-difficulty workloads where one-size-fits-all retrieval either wastes cost on easy queries or fails on hard multihop cases, and (ii) extraction loss, where graph abstraction omits fine-grained qualifiers that remain only in source text. We present A2RAG, an adaptive-and-agentic GraphRAG framework for cost-aware and reliable reasoning. A2RAG couples an adaptive controller that verifies evidence sufficiency and triggers targeted refinement only when necessary, with an agentic retriever that progressively escalates retrieval effort and maps graph signals back to provenance text to remain robust under extraction loss and incomplete graphs. Experiments on HotpotQA and 2WikiMultiHopQA demonstrate that A2RAG achieves +9.9/+11.8 absolute gains in Recall@2, while cutting token consumption and end-to-end latency by about 50% relative to iterative multihop baselines.
Current evaluation methods for Attributed Question Answering (AQA) suffer from \textit{attribution myopia}: they emphasize verification of isolated statements and their attributions but overlook the global logical integrity of long-form answers. Consequently, Large Language Models (LLMs) often produce factually grounded yet logically incoherent responses with elusive deductive gaps. To mitigate this limitation, we present \textsc{LogicScore}, a unified evaluation framework that shifts the paradigm from local assessment to global reasoning scrutiny. Grounded in Horn Rules, our approach integrates a backward verification mechanism to systematically evaluate three key reasoning dimensions: \textit{Completeness} (logically sound deduction), \textit{Conciseness} (non-redundancy), and \textit{Determinateness} (consistent answer entailment). Extensive experiments across three multi-hop QA datasets (HotpotQA, MusiQue, and 2WikiMultiHopQA) and over 20 LLMs (including GPT-5, Gemini-3-Pro, LLaMA3, and task-specific tuned models) reveal a critical capability gap: leading models often achieve high attribution scores (e.g., 92.85\% precision for Gemini-3 Pro) but struggle with global reasoning quality (e.g., 35.11\% Conciseness for Gemini-3 Pro). Our work establishes a robust standard for logical evaluation, highlighting the need to prioritize reasoning coherence alongside factual grounding in LLM development. Codes are available at: https://github.com/zhichaoyan11/LogicScore.
Current evaluation methods for Attributed Question Answering (AQA) suffer from \textit{attribution myopia}: they emphasize verification of isolated statements and their attributions but overlook the global logical integrity of long-form answers. Consequently, Large Language Models (LLMs) often produce factually grounded yet logically incoherent responses with elusive deductive gaps. To mitigate this limitation, we present \textsc{LogicScore}, a unified evaluation framework that shifts the paradigm from local assessment to global reasoning scrutiny. Grounded in Horn Rules, our approach integrates a backward verification mechanism to systematically evaluate three key reasoning dimensions: \textit{Completeness} (logically sound deduction), \textit{Conciseness} (non-redundancy), and \textit{Determinateness} (consistent answer entailment). Extensive experiments across three multi-hop QA datasets (HotpotQA, MusiQue, and 2WikiMultiHopQA) and over 20 LLMs (including GPT-5, Gemini-3-Pro, LLaMA3, and task-specific tuned models) reveal a critical capability gap: leading models often achieve high attribution scores (e.g., 92.85\% precision for Gemini-3 Pro) but struggle with global reasoning quality (e.g., 35.11\% Conciseness for Gemini-3 Pro). Our work establishes a robust standard for logical evaluation, highlighting the need to prioritize reasoning coherence alongside factual grounding in LLM development. Codes are available at: https://github.com/zhichaoyan11/LogicScore.
Multi-hop question answering (QA) requires systems to iteratively retrieve evidence and reason across multiple hops. While recent RAG and agentic methods report strong results, the underlying retrieval--reasoning \emph{process} is often left implicit, making procedural choices hard to compare across model families. This survey takes the execution procedure as the unit of analysis and introduces a four-axis framework covering (A) overall execution plan, (B) index structure, (C) next-step control (strategies and triggers), and (D) stop/continue criteria. Using this schema, we map representative multi-hop QA systems and synthesize reported ablations and tendencies on standard benchmarks (e.g., HotpotQA, 2WikiMultiHopQA, MuSiQue), highlighting recurring trade-offs among effectiveness, efficiency, and evidence faithfulness. We conclude with open challenges for retrieval--reasoning agents, including structure-aware planning, transferable control policies, and robust stopping under distribution shift.
This paper proposes a group deliberation oriented multi-agent conversational model to address the limitations of single large language models in complex reasoning tasks. The model adopts a three-level role division architecture consisting of generation, verification, and integration. An opinion generation agent produces diverse reasoning perspectives, an evidence verification agent retrieves external knowledge and quantifies factual support, and a consistency arbitration agent integrates logically coherent conclusions. A self-game mechanism is introduced to expand multi-path reasoning trajectories, while a retrieval enhancement module dynamically supplements external knowledge. A composite reward function combining factual consistency and logical coherence is designed, and an improved proximal policy optimization strategy is applied for collaborative training. Experimental results show that the proposed model improves multi-hop reasoning accuracy by 16.8 percent on HotpotQA, 14.3 percent on 2WikiMultihopQA, and 19.2 percent on MeetingBank, while improving consistency by 21.5 percent. The model achieves higher reasoning efficiency than mainstream multi-agent approaches, providing an effective and stable solution for complex reasoning tasks.




Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-$k$, typically address this by \textit{adding} more context or pruning existing lists. However, simply expanding the context window often leads to \textbf{context dilution}, where distractors crowd out relevant information. We propose \textbf{SEAL-RAG}, a training-free controller that adopts a \textbf{``replace, don't expand''} strategy to fight context dilution under a fixed retrieval depth $k$. SEAL executes a (\textbf{S}earch $\rightarrow$ \textbf{E}xtract $\rightarrow$ \textbf{A}ssess $\rightarrow$ \textbf{L}oop) cycle: it performs on-the-fly, entity-anchored extraction to build a live \textit{gap specification} (missing entities/relations), triggers targeted micro-queries, and uses \textit{entity-first ranking} to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive-$k$ in a shared environment on \textbf{HotpotQA} and \textbf{2WikiMultiHopQA}. On HotpotQA ($k=3$), SEAL improves answer correctness by \textbf{+3--13 pp} and evidence precision by \textbf{+12--18 pp} over Self-RAG. On 2WikiMultiHopQA ($k=5$), it outperforms Adaptive-$k$ by \textbf{+8.0 pp} in accuracy and maintains \textbf{96\%} evidence precision compared to 22\% for CRAG. These gains are statistically significant ($p<0.001$). By enforcing fixed-$k$ replacement, SEAL yields a predictable cost profile while ensuring the top-$k$ slots are optimized for precision rather than mere breadth. We release our code and data at https://github.com/mosherino/SEAL-RAG.




Large Language Models (LLMs) excel at reasoning and generation but are inherently limited by static pretraining data, resulting in factual inaccuracies and weak adaptability to new information. Retrieval-Augmented Generation (RAG) addresses this issue by grounding LLMs in external knowledge; However, the effectiveness of RAG critically depends on whether the model can adequately access relevant information. Existing RAG systems rely on a single retriever with fixed top-k selection, restricting access to a narrow and static subset of the corpus. As a result, this single-retriever paradigm has become the primary bottleneck for comprehensive external information acquisition, especially in tasks requiring corpus-level reasoning. To overcome this limitation, we propose MARAG-R1, a reinforcement-learned multi-tool RAG framework that enables LLMs to dynamically coordinate multiple retrieval mechanisms for broader and more precise information access. MARAG-R1 equips the model with four retrieval tools -- semantic search, keyword search, filtering, and aggregation -- and learns both how and when to use them through a two-stage training process: supervised fine-tuning followed by reinforcement learning. This design allows the model to interleave reasoning and retrieval, progressively gathering sufficient evidence for corpus-level synthesis. Experiments on GlobalQA, HotpotQA, and 2WikiMultiHopQA demonstrate that MARAG-R1 substantially outperforms strong baselines and achieves new state-of-the-art results in corpus-level reasoning tasks.