University of Glasgow, United Kingdom
Abstract:Large Language Models (LLMs) have significantly advanced the field of Artificial Intelligence. However, their deployment is resource-intensive, not only due to the large number of model parameters but also because the (Key-Value) KV cache consumes a lot of memory during inference. While several works propose reducing the KV cache by evicting the unnecessary tokens, these approaches rely on accumulated attention score as eviction score to quantify the importance of the token. We identify the accumulated attention score is biased and it decreases with the position of the tokens in the mathematical expectation. As a result, the retained tokens concentrate on the initial positions, limiting model's access to global contextual information. To address this issue, we propose Adaptive holistic attention KV (AhaKV), it addresses the bias of the accumulated attention score by adaptively tuning the scale of softmax according the expectation of information entropy of attention scores. To make use of the holistic attention information in self-attention mechanism, AhaKV utilize the information of value vectors, which is overlooked in previous works, to refine the adaptive score. We show theoretically that our method is well suited for bias reduction. We deployed AhaKV on different models with a fixed cache budget. Experiments show that AhaKV successfully mitigates bias and retains crucial tokens across global context and achieve state-of-the-art results against other related work on several benchmark tasks.
Abstract:End-to-end speech large language models ((LLMs)) extend the capabilities of text-based models to directly process and generate audio tokens. However, this often leads to a decline in reasoning and generation performance compared to text input, a phenomenon referred to as intelligence degradation. To systematically evaluate this gap, we propose S2SBench, a benchmark designed to quantify performance degradation in Speech LLMs. It includes diagnostic datasets targeting sentence continuation and commonsense reasoning under audio input. We further introduce a pairwise evaluation protocol based on perplexity differences between plausible and implausible samples to measure degradation relative to text input. We apply S2SBench to analyze the training process of Baichuan-Audio, which further demonstrates the benchmark's effectiveness. All datasets and evaluation code are available at https://github.com/undobug/S2SBench.
Abstract:Active 3D scene representation is pivotal in modern robotics applications, including remote inspection, manipulation, and telepresence. Traditional methods primarily optimize geometric fidelity or rendering accuracy, but often overlook operator-specific objectives, such as safety-critical coverage or task-driven viewpoints. This limitation leads to suboptimal viewpoint selection, particularly in constrained environments such as nuclear decommissioning. To bridge this gap, we introduce a novel framework that integrates expert operator preferences into the active 3D scene representation pipeline. Specifically, we employ Reinforcement Learning from Human Feedback (RLHF) to guide robotic path planning, reshaping the reward function based on expert input. To capture operator-specific priorities, we conduct interactive choice experiments that evaluate user preferences in 3D scene representation. We validate our framework using a UR3e robotic arm for reactor tile inspection in a nuclear decommissioning scenario. Compared to baseline methods, our approach enhances scene representation while optimizing trajectory efficiency. The RLHF-based policy consistently outperforms random selection, prioritizing task-critical details. By unifying explicit 3D geometric modeling with implicit human-in-the-loop optimization, this work establishes a foundation for adaptive, safety-critical robotic perception systems, paving the way for enhanced automation in nuclear decommissioning, remote maintenance, and other high-risk environments.
Abstract:Text-to-image person re-identification (ReID) aims to retrieve the images of an interested person based on textual descriptions. One main challenge for this task is the high cost in manually annotating large-scale databases, which affects the generalization ability of ReID models. Recent works handle this problem by leveraging Multi-modal Large Language Models (MLLMs) to describe pedestrian images automatically. However, the captions produced by MLLMs lack diversity in description styles. To address this issue, we propose a Human Annotator Modeling (HAM) approach to enable MLLMs to mimic the description styles of thousands of human annotators. Specifically, we first extract style features from human textual descriptions and perform clustering on them. This allows us to group textual descriptions with similar styles into the same cluster. Then, we employ a prompt to represent each of these clusters and apply prompt learning to mimic the description styles of different human annotators. Furthermore, we define a style feature space and perform uniform sampling in this space to obtain more diverse clustering prototypes, which further enriches the diversity of the MLLM-generated captions. Finally, we adopt HAM to automatically annotate a massive-scale database for text-to-image ReID. Extensive experiments on this database demonstrate that it significantly improves the generalization ability of ReID models.
Abstract:As automated trading gains traction in the financial market, algorithmic investment strategies are increasingly prominent. While Large Language Models (LLMs) and Agent-based models exhibit promising potential in real-time market analysis and trading decisions, they still experience a significant -20% loss when confronted with rapid declines or frequent fluctuations, impeding their practical application. Hence, there is an imperative to explore a more robust and resilient framework. This paper introduces an innovative multi-agent system, HedgeAgents, aimed at bolstering system robustness via ``hedging'' strategies. In this well-balanced system, an array of hedging agents has been tailored, where HedgeAgents consist of a central fund manager and multiple hedging experts specializing in various financial asset classes. These agents leverage LLMs' cognitive capabilities to make decisions and coordinate through three types of conferences. Benefiting from the powerful understanding of LLMs, our HedgeAgents attained a 70% annualized return and a 400% total return over a period of 3 years. Moreover, we have observed with delight that HedgeAgents can even formulate investment experience comparable to those of human experts (https://hedgeagents.github.io/).
Abstract:Currently, large language models (LLMs) have made significant progress in the field of psychological counseling. However, existing mental health LLMs overlook a critical issue where they do not consider the fact that different psychological counselors exhibit different personal styles, including linguistic style and therapy techniques, etc. As a result, these LLMs fail to satisfy the individual needs of clients who seek different counseling styles. To help bridge this gap, we propose PsyDT, a novel framework using LLMs to construct the Digital Twin of Psychological counselor with personalized counseling style. Compared to the time-consuming and costly approach of collecting a large number of real-world counseling cases to create a specific counselor's digital twin, our framework offers a faster and more cost-effective solution. To construct PsyDT, we utilize dynamic one-shot learning by using GPT-4 to capture counselor's unique counseling style, mainly focusing on linguistic style and therapy techniques. Subsequently, using existing single-turn long-text dialogues with client's questions, GPT-4 is guided to synthesize multi-turn dialogues of specific counselor. Finally, we fine-tune the LLMs on the synthetic dataset, PsyDTCorpus, to achieve the digital twin of psychological counselor with personalized counseling style. Experimental results indicate that our proposed PsyDT framework can synthesize multi-turn dialogues that closely resemble real-world counseling cases and demonstrate better performance compared to other baselines, thereby show that our framework can effectively construct the digital twin of psychological counselor with a specific counseling style.
Abstract:Diagnosing seizure onset zone (SOZ) is a challenge in neurosurgery, where stereoelectroencephalography (sEEG) serves as a critical technique. In sEEG SOZ identification, the existing studies focus solely on the intra-patient representation of epileptic information, overlooking the general features of epilepsy across patients and feature interdependencies between feature elements in each contact site. In order to address the aforementioned challenges, we propose the shared attention-based autoencoder (sATAE). sATAE is trained by sEEG data across all patients, with attention blocks introduced to enhance the representation of interdependencies between feature elements. Considering the spatial diversity of sEEG across patients, we introduce graph-based method for identification SOZ of each patient. However, the current graph-based methods for sEEG SOZ identification rely exclusively on static graphs to model epileptic networks. Inspired by the finding of neuroscience that epileptic network is intricately characterized by the interplay of sophisticated equilibrium between fluctuating and stable states, we design the hierarchical fusion-based graph convolution network (HFGCN) to identify the SOZ. HFGCN integrates the dynamic and static characteristics of epileptic networks through hierarchical weighting across different hierarchies, facilitating a more comprehensive learning of epileptic features and enriching node information for sEEG SOZ identification. Combining sATAE and HFGCN, we perform comprehensive experiments with sATAE-HFGCN on the self-build sEEG dataset, which includes sEEG data from 17 patients with temporal lobe epilepsy. The results show that our method, sATAE-HFGCN, achieves superior performance for identifying the SOZ of each patient, effectively addressing the aforementioned challenges, providing an efficient solution for sEEG-based SOZ identification.
Abstract:We present a novel approach to personalized sleep health management using few-shot Chain-of-Thought (CoT) distillation, enabling small-scale language models (> 2B parameters) to rival the performance of large language models (LLMs) in specialized health domains. Our method simultaneously distills problem-solving strategies, long-tail expert knowledge, and personalized recommendation capabilities from larger models into more efficient, compact models. Unlike existing systems, our approach offers three key functionalities: generating personalized sleep health recommendations, supporting user-specific follow-up inquiries, and providing responses to domain-specific knowledge questions. We focus on sleep health due to its measurability via wearable devices and its impact on overall well-being. Our experimental setup, involving GPT-4o for data synthesis, Qwen-max for instruction set creation, and Qwen2.5 1.5B for model distillation, demonstrates significant improvements over baseline small-scale models in penalization, reasoning, and knowledge application. Experiments using 100 simulated sleep reports and 1,000 domain-specific questions shows our model achieves comparable performance to larger models while maintaining efficiency for real-world deployment. This research not only advances AI-driven health management but also provides a novel approach to leveraging LLM capabilities in resource-constrained environments, potentially enhancing the accessibility of personalized healthcare solutions.
Abstract:Only the chairs can edit This paper explores the growing need for task-oriented communications in warehouse logistics, where traditional communication Key Performance Indicators (KPIs)-such as latency, reliability, and throughput-often do not fully meet task requirements. As the complexity of data flow management in large-scale device networks increases, there is also a pressing need for innovative cross-system designs that balance data compression, communication, and computation. To address these challenges, we propose a task-oriented, edge-assisted framework for cooperative data compression, communication, and computing in Unmanned Ground Vehicle (UGV)-enhanced warehouse logistics. In this framework, two UGVs collaborate to transport cargo, with control functions-navigation for the front UGV and following/conveyance for the rear UGV-offloaded to the edge server to accommodate their limited on-board computing resources. We develop a Deep Reinforcement Learning (DRL)-based two-stage point cloud data compression algorithm that dynamically and collaboratively adjusts compression ratios according to task requirements, significantly reducing communication overhead. System-level simulations of our UGV logistics prototype demonstrate the framework's effectiveness and its potential for swift real-world implementation.
Abstract:Speech emotion recognition plays a crucial role in human-machine interaction systems. Recently various optimized Transformers have been successfully applied to speech emotion recognition. However, the existing Transformer architectures focus more on global information and require large computation. On the other hand, abundant speech emotional representations exist locally on different parts of the input speech. To tackle these problems, we propose a Multi-Scale TRansfomer (MSTR) for speech emotion recognition. It comprises of three main components: (1) a multi-scale temporal feature operator, (2) a fractal self-attention module, and (3) a scale mixer module. These three components can effectively enhance the transformer's ability to learn multi-scale local emotion representations. Experimental results demonstrate that the proposed MSTR model significantly outperforms a vanilla Transformer and other state-of-the-art methods across three speech emotion datasets: IEMOCAP, MELD and, CREMAD. In addition, it can greatly reduce the computational cost.