Alert button
Picture for Zi-Yuan Hu

Zi-Yuan Hu

Alert button

VL-PET: Vision-and-Language Parameter-Efficient Tuning via Granularity Control

Aug 18, 2023
Zi-Yuan Hu, Yanyang Li, Michael R. Lyu, Liwei Wang

As the model size of pre-trained language models (PLMs) grows rapidly, full fine-tuning becomes prohibitively expensive for model training and storage. In vision-and-language (VL), parameter-efficient tuning (PET) techniques are proposed to integrate modular modifications (e.g., Adapter and LoRA) into encoder-decoder PLMs. By tuning a small set of trainable parameters, these techniques perform on par with full fine-tuning. However, excessive modular modifications and neglecting the functionality gap between the encoders and decoders can lead to performance degradation, while existing PET techniques (e.g., VL-Adapter) overlook these critical issues. In this paper, we propose a Vision-and-Language Parameter-Efficient Tuning (VL-PET) framework to impose effective control over modular modifications via a novel granularity-controlled mechanism. Considering different granularity-controlled matrices generated by this mechanism, a variety of model-agnostic VL-PET modules can be instantiated from our framework for better efficiency and effectiveness trade-offs. We further propose lightweight PET module designs to enhance VL alignment and modeling for the encoders and maintain text generation for the decoders. Extensive experiments conducted on four image-text tasks and four video-text tasks demonstrate the efficiency, effectiveness and transferability of our VL-PET framework. In particular, our VL-PET-large with lightweight PET module designs significantly outperforms VL-Adapter by 2.92% (3.41%) and LoRA by 3.37% (7.03%) with BART-base (T5-base) on image-text tasks. Furthermore, we validate the enhanced effect of employing our VL-PET designs on existing PET techniques, enabling them to achieve significant performance improvements. Our code is available at

* ICCV 2023 (17 pages, 6 figures, 22 tables) 
Viaarxiv icon

CLEVA: Chinese Language Models EVAluation Platform

Aug 09, 2023
Yanyang Li, Jianqiao Zhao, Duo Zheng, Zi-Yuan Hu, Zhi Chen, Xiaohui Su, Yongfeng Huang, Shijia Huang, Dahua Lin, Michael R. Lyu, Liwei Wang

Figure 1 for CLEVA: Chinese Language Models EVAluation Platform
Figure 2 for CLEVA: Chinese Language Models EVAluation Platform
Figure 3 for CLEVA: Chinese Language Models EVAluation Platform
Figure 4 for CLEVA: Chinese Language Models EVAluation Platform

With the continuous emergence of Chinese Large Language Models (LLMs), how to evaluate a model's capabilities has become an increasingly significant issue. The absence of a comprehensive Chinese benchmark that thoroughly assesses a model's performance, the unstandardized and incomparable prompting procedure, and the prevalent risk of contamination pose major challenges in the current evaluation of Chinese LLMs. We present CLEVA, a user-friendly platform crafted to holistically evaluate Chinese LLMs. Our platform employs a standardized workflow to assess LLMs' performance across various dimensions, regularly updating a competitive leaderboard. To alleviate contamination, CLEVA curates a significant proportion of new data and develops a sampling strategy that guarantees a unique subset for each leaderboard round. Empowered by an easy-to-use interface that requires just a few mouse clicks and a model API, users can conduct a thorough evaluation with minimal coding. Large-scale experiments featuring 23 influential Chinese LLMs have validated CLEVA's efficacy.

Viaarxiv icon

Prototypical Graph Contrastive Learning

Jun 17, 2021
Shuai Lin, Pan Zhou, Zi-Yuan Hu, Shuojia Wang, Ruihui Zhao, Yefeng Zheng, Liang Lin, Eric Xing, Xiaodan Liang

Figure 1 for Prototypical Graph Contrastive Learning
Figure 2 for Prototypical Graph Contrastive Learning
Figure 3 for Prototypical Graph Contrastive Learning
Figure 4 for Prototypical Graph Contrastive Learning

Graph-level representations are critical in various real-world applications, such as predicting the properties of molecules. But in practice, precise graph annotations are generally very expensive and time-consuming. To address this issue, graph contrastive learning constructs instance discrimination task which pulls together positive pairs (augmentation pairs of the same graph) and pushes away negative pairs (augmentation pairs of different graphs) for unsupervised representation learning. However, since for a query, its negatives are uniformly sampled from all graphs, existing methods suffer from the critical sampling bias issue, i.e., the negatives likely having the same semantic structure with the query, leading to performance degradation. To mitigate this sampling bias issue, in this paper, we propose a Prototypical Graph Contrastive Learning (PGCL) approach. Specifically, PGCL models the underlying semantic structure of the graph data via clustering semantically similar graphs into the same group, and simultaneously encourages the clustering consistency for different augmentations of the same graph. Then given a query, it performs negative sampling via drawing the graphs from those clusters that differ from the cluster of query, which ensures the semantic difference between query and its negative samples. Moreover, for a query, PGCL further reweights its negative samples based on the distance between their prototypes (cluster centroids) and the query prototype such that those negatives having moderate prototype distance enjoy relatively large weights. This reweighting strategy is proved to be more effective than uniform sampling. Experimental results on various graph benchmarks testify the advantages of our PGCL over state-of-the-art methods.

Viaarxiv icon

BCFNet: A Balanced Collaborative Filtering Network with Attention Mechanism

Mar 10, 2021
Chang-Dong Wang, Zi-Yuan Hu, Jin Huang, Zhi-Hong Deng, Ling Huang, Jian-Huang Lai, Philip S. Yu

Figure 1 for BCFNet: A Balanced Collaborative Filtering Network with Attention Mechanism
Figure 2 for BCFNet: A Balanced Collaborative Filtering Network with Attention Mechanism
Figure 3 for BCFNet: A Balanced Collaborative Filtering Network with Attention Mechanism
Figure 4 for BCFNet: A Balanced Collaborative Filtering Network with Attention Mechanism

Collaborative Filtering (CF) based recommendation methods have been widely studied, which can be generally categorized into two types, i.e., representation learning-based CF methods and matching function learning-based CF methods. Representation learning tries to learn a common low dimensional space for the representations of users and items. In this case, a user and item match better if they have higher similarity in that common space. Matching function learning tries to directly learn the complex matching function that maps user-item pairs to matching scores. Although both methods are well developed, they suffer from two fundamental flaws, i.e., the representation learning resorts to applying a dot product which has limited expressiveness on the latent features of users and items, while the matching function learning has weakness in capturing low-rank relations. To overcome such flaws, we propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet), which has the strengths of the two types of methods. In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network. Furthermore, a balance module is designed to alleviate the over-fitting issue in DNNs. Extensive experiments on eight real-world datasets demonstrate the effectiveness of the proposed model.

Viaarxiv icon