Pre-trained language models (PLMs) have demonstrated strong performance in sequential recommendation (SR), which are utilized to extract general knowledge. However, existing methods still lack domain knowledge and struggle to capture users' fine-grained preferences. Meanwhile, many traditional SR methods improve this issue by integrating side information while suffering from information loss. To summarize, we believe that a good recommendation system should utilize both general and domain knowledge simultaneously. Therefore, we introduce an external knowledge base and propose Knowledge Prompt-tuning for Sequential Recommendation (\textbf{KP4SR}). Specifically, we construct a set of relationship templates and transform a structured knowledge graph (KG) into knowledge prompts to solve the problem of the semantic gap. However, knowledge prompts disrupt the original data structure and introduce a significant amount of noise. We further construct a knowledge tree and propose a knowledge tree mask, which restores the data structure in a mask matrix form, thus mitigating the noise problem. We evaluate KP4SR on three real-world datasets, and experimental results show that our approach outperforms state-of-the-art methods on multiple evaluation metrics. Specifically, compared with PLM-based methods, our method improves NDCG@5 and HR@5 by \textcolor{red}{40.65\%} and \textcolor{red}{36.42\%} on the books dataset, \textcolor{red}{11.17\%} and \textcolor{red}{11.47\%} on the music dataset, and \textcolor{red}{22.17\%} and \textcolor{red}{19.14\%} on the movies dataset, respectively. Our code is publicly available at the link: \href{https://github.com/zhaijianyang/KP4SR}{\textcolor{blue}{https://github.com/zhaijianyang/KP4SR}.}
Contrastive learning (CL) has become the de-facto learning paradigm in self-supervised learning on graphs, which generally follows the "augmenting-contrasting" learning scheme. However, we observe that unlike CL in computer vision domain, CL in graph domain performs decently even without augmentation. We conduct a systematic analysis of this phenomenon and argue that homophily, i.e., the principle that "like attracts like", plays a key role in the success of graph CL. Inspired to leverage this property explicitly, we propose HomoGCL, a model-agnostic framework to expand the positive set using neighbor nodes with neighbor-specific significances. Theoretically, HomoGCL introduces a stricter lower bound of the mutual information between raw node features and node embeddings in augmented views. Furthermore, HomoGCL can be combined with existing graph CL models in a plug-and-play way with light extra computational overhead. Extensive experiments demonstrate that HomoGCL yields multiple state-of-the-art results across six public datasets and consistently brings notable performance improvements when applied to various graph CL methods. Code is avilable at https://github.com/wenzhilics/HomoGCL.
Class imbalance is the phenomenon that some classes have much fewer instances than others, which is ubiquitous in real-world graph-structured scenarios. Recent studies find that off-the-shelf Graph Neural Networks (GNNs) would under-represent minor class samples. We investigate this phenomenon and discover that the subspaces of minor classes being squeezed by those of the major ones in the latent space is the main cause of this failure. We are naturally inspired to enlarge the decision boundaries of minor classes and propose a general framework GraphSHA by Synthesizing HArder minor samples. Furthermore, to avoid the enlarged minor boundary violating the subspaces of neighbor classes, we also propose a module called SemiMixup to transmit enlarged boundary information to the interior of the minor classes while blocking information propagation from minor classes to neighbor classes. Empirically, GraphSHA shows its effectiveness in enlarging the decision boundaries of minor classes, as it outperforms various baseline methods in class-imbalanced node classification with different GNN backbone encoders over seven public benchmark datasets. Code is avilable at https://github.com/wenzhilics/GraphSHA.
The bipartite graph structure has shown its promising ability in facilitating the subspace clustering and spectral clustering algorithms for large-scale datasets. To avoid the post-processing via k-means during the bipartite graph partitioning, the constrained Laplacian rank (CLR) is often utilized for constraining the number of connected components (i.e., clusters) in the bipartite graph, which, however, neglects the distribution (or normalization) of these connected components and may lead to imbalanced or even ill clusters. Despite the significant success of normalized cut (Ncut) in general graphs, it remains surprisingly an open problem how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity. In this paper, we first characterize a novel one-step bipartite graph cut (OBCut) criterion with normalized constraints, and theoretically prove its equivalence to a trace maximization problem. Then we extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled in a unified objective function, and an alternating optimization algorithm is further designed to solve it in linear time. Experiments on a variety of general and large-scale datasets demonstrate the effectiveness and scalability of our approach.
Contrastive deep clustering has recently gained significant attention with its ability of joint contrastive learning and clustering via deep neural networks. Despite the rapid progress, previous works mostly require both positive and negative sample pairs for contrastive clustering, which rely on a relative large batch-size. Moreover, they typically adopt a two-stream architecture with two augmented views, which overlook the possibility and potential benefits of multi-stream architectures (especially with heterogeneous or hybrid networks). In light of this, this paper presents a new end-to-end deep clustering approach termed Heterogeneous Tri-stream Clustering Network (HTCN). The tri-stream architecture in HTCN consists of three main components, including two weight-sharing online networks and a target network, where the parameters of the target network are the exponential moving average of that of the online networks. Notably, the two online networks are trained by simultaneously (i) predicting the instance representations of the target network and (ii) enforcing the consistency between the cluster representations of the target network and that of the two online networks. Experimental results on four challenging image datasets demonstrate the superiority of HTCN over the state-of-the-art deep clustering approaches. The code is available at https://github.com/dengxiaozhi/HTCN.
Recently the deep learning has shown its advantage in representation learning and clustering for time series data. Despite the considerable progress, the existing deep time series clustering approaches mostly seek to train the deep neural network by some instance reconstruction based or cluster distribution based objective, which, however, lack the ability to exploit the sample-wise (or augmentation-wise) contrastive information or even the higher-level (e.g., cluster-level) contrastiveness for learning discriminative and clustering-friendly representations. In light of this, this paper presents a deep temporal contrastive clustering (DTCC) approach, which for the first time, to our knowledge, incorporates the contrastive learning paradigm into the deep time series clustering research. Specifically, with two parallel views generated from the original time series and their augmentations, we utilize two identical auto-encoders to learn the corresponding representations, and in the meantime perform the cluster distribution learning by incorporating a k-means objective. Further, two levels of contrastive learning are simultaneously enforced to capture the instance-level and cluster-level contrastive information, respectively. With the reconstruction loss of the auto-encoder, the cluster distribution loss, and the two levels of contrastive losses jointly optimized, the network architecture is trained in a self-supervised manner and the clustering result can thereby be obtained. Experiments on a variety of time series datasets demonstrate the superiority of our DTCC approach over the state-of-the-art.
Multi-view attributed graph clustering is an important approach to partition multi-view data based on the attribute feature and adjacent matrices from different views. Some attempts have been made in utilizing Graph Neural Network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper. Specifically, the proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables GCN to capture the more essential low-level representations. Besides, the Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure with the help of the Self-supervised Clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.
Although previous graph-based multi-view clustering algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the $k$-means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this paper presents an efficient multi-view clustering approach via unified and discrete bipartite graph learning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Further, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach.
Multiview clustering has been extensively studied to take advantage of multi-source information to improve the clustering performance. In general, most of the existing works typically compute an n * n affinity graph by some similarity/distance metrics (e.g. the Euclidean distance) or learned representations, and explore the pairwise correlations across views. But unfortunately, a quadratic or even cubic complexity is often needed, bringing about difficulty in clustering largescale datasets. Some efforts have been made recently to capture data distribution in multiple views by selecting view-wise anchor representations with k-means, or by direct matrix factorization on the original observations. Despite the significant success, few of them have considered the view-insufficiency issue, implicitly holding the assumption that each individual view is sufficient to recover the cluster structure. Moreover, the latent integral space as well as the shared cluster structure from multiple insufficient views is not able to be simultaneously discovered. In view of this, we propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity. Specifically, view generation models are designed to reconstruct the view observations from the latent integral space with diverse adaptive contributions. Meanwhile, a centroid representation with orthogonality constraint and cluster partition are seamlessly constructed to approximate the latent integral space. An alternate minimizing algorithm is developed to solve the optimization problem, which is proved to have linear time complexity w.r.t. the sample size. Extensive experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method compared with the state-of-the-art methods.
Deep clustering has recently attracted significant attention. Despite the remarkable progress, most of the previous deep clustering works still suffer from two limitations. First, many of them focus on some distribution-based clustering loss, lacking the ability to exploit sample-wise (or augmentation-wise) relationships via contrastive learning. Second, they often neglect the indirect sample-wise structure information, overlooking the rich possibilities of multi-scale neighborhood structure learning. In view of this, this paper presents a new deep clustering approach termed Image clustering with contrastive learning and multi-scale Graph Convolutional Networks (IcicleGCN), which bridges the gap between convolutional neural network (CNN) and graph convolutional network (GCN) as well as the gap between contrastive learning and multi-scale neighborhood structure learning for the image clustering task. The proposed IcicleGCN framework consists of four main modules, namely, the CNN-based backbone, the Instance Similarity Module (ISM), the Joint Cluster Structure Learning and Instance reconstruction Module (JC-SLIM), and the Multi-scale GCN module (M-GCN). Specifically, with two random augmentations performed on each image, the backbone network with two weight-sharing views is utilized to learn the representations for the augmented samples, which are then fed to ISM and JC-SLIM for instance-level and cluster-level contrastive learning, respectively. Further, to enforce multi-scale neighborhood structure learning, two streams of GCNs and an auto-encoder are simultaneously trained via (i) the layer-wise interaction with representation fusion and (ii) the joint self-adaptive learning that ensures their last-layer output distributions to be consistent. Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.