Abstract:Sparsely annotated semantic segmentation (SASS) aims to train a segmentation network with coarse-grained (i.e., point-, scribble-, and block-wise) supervisions, where only a small proportion of pixels are labeled in each image. In this paper, we propose a novel tree energy loss for SASS by providing semantic guidance for unlabeled pixels. The tree energy loss represents images as minimum spanning trees to model both low-level and high-level pair-wise affinities. By sequentially applying these affinities to the network prediction, soft pseudo labels for unlabeled pixels are generated in a coarse-to-fine manner, achieving dynamic online self-training. The tree energy loss is effective and easy to be incorporated into existing frameworks by combining it with a traditional segmentation loss. Compared with previous SASS methods, our method requires no multistage training strategies, alternating optimization procedures, additional supervised data, or time-consuming post-processing while outperforming them in all SASS settings. Code is available at https://github.com/megvii-research/TreeEnergyLoss.
Abstract:On existing public benchmarks, face forgery detection techniques have achieved great success. However, when used in multi-person videos, which often contain many people active in the scene with only a small subset having been manipulated, their performance remains far from being satisfactory. To take face forgery detection to a new level, we construct a novel large-scale dataset, called FFIW-10K, which comprises 10,000 high-quality forgery videos, with an average of three human faces in each frame. The manipulation procedure is fully automatic, controlled by a domain-adversarial quality assessment network, making our dataset highly scalable with low human cost. In addition, we propose a novel algorithm to tackle the task of multi-person face forgery detection. Supervised by only video-level label, the algorithm explores multiple instance learning and learns to automatically attend to tampered faces. Our algorithm outperforms representative approaches for both forgery classification and localization on FFIW-10K, and also shows high generalization ability on existing benchmarks. We hope that our dataset and study will help the community to explore this new field in more depth.
Abstract:In this paper, we solve the sample shortage problem in the human parsing task. We begin with the self-learning strategy, which generates pseudo-labels for unlabeled data to retrain the model. However, directly using noisy pseudo-labels will cause error amplification and accumulation. Considering the topology structure of human body, we propose a trainable graph reasoning method that establishes internal structural connections between graph nodes to correct two typical errors in the pseudo-labels, i.e., the global structural error and the local consistency error. For the global error, we first transform category-wise features into a high-level graph model with coarse-grained structural information, and then decouple the high-level graph to reconstruct the category features. The reconstructed features have a stronger ability to represent the topology structure of the human body. Enlarging the receptive field of features can effectively reducing the local error. We first project feature pixels into a local graph model to capture pixel-wise relations in a hierarchical graph manner, then reverse the relation information back to the pixels. With the global structural and local consistency modules, these errors are rectified and confident pseudo-labels are generated for retraining. Extensive experiments on the LIP and the ATR datasets demonstrate the effectiveness of our global and local rectification modules. Our method outperforms other state-of-the-art methods in supervised human parsing tasks.