Abstract:Reading text from images (either natural scenes or documents) has been a long-standing research topic for decades, due to the high technical challenge and wide application range. Previously, individual specialist models are developed to tackle the sub-tasks of text reading (e.g., scene text recognition, handwritten text recognition and mathematical expression recognition). However, such specialist models usually cannot effectively generalize across different sub-tasks. Recently, generalist models (such as GPT-4V), trained on tremendous data in a unified way, have shown enormous potential in reading text in various scenarios, but with the drawbacks of limited accuracy and low efficiency. In this work, we propose Platypus, a generalized specialist model for text reading. Specifically, Platypus combines the best of both worlds: being able to recognize text of various forms with a single unified architecture, while achieving excellent accuracy and high efficiency. To better exploit the advantage of Platypus, we also construct a text reading dataset (called Worms), the images of which are curated from previous datasets and partially re-labeled. Experiments on standard benchmarks demonstrate the effectiveness and superiority of the proposed Platypus model. Model and data will be made publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/Platypus.
Abstract:For computer systems to effectively interact with humans using spoken language, they need to understand how the words being generated affect the users' moment-by-moment attention. Our study focuses on the incremental prediction of attention as a person is seeing an image and hearing a referring expression defining the object in the scene that should be fixated by gaze. To predict the gaze scanpaths in this incremental object referral task, we developed the Attention in Referral Transformer model or ART, which predicts the human fixations spurred by each word in a referring expression. ART uses a multimodal transformer encoder to jointly learn gaze behavior and its underlying grounding tasks, and an autoregressive transformer decoder to predict, for each word, a variable number of fixations based on fixation history. To train ART, we created RefCOCO-Gaze, a large-scale dataset of 19,738 human gaze scanpaths, corresponding to 2,094 unique image-expression pairs, from 220 participants performing our referral task. In our quantitative and qualitative analyses, ART not only outperforms existing methods in scanpath prediction, but also appears to capture several human attention patterns, such as waiting, scanning, and verification.
Abstract:Recently, with the rapid advancements of generative models, the field of visual text generation has witnessed significant progress. However, it is still challenging to render high-quality text images in real-world scenarios, as three critical criteria should be satisfied: (1) Fidelity: the generated text images should be photo-realistic and the contents are expected to be the same as specified in the given conditions; (2) Reasonability: the regions and contents of the generated text should cohere with the scene; (3) Utility: the generated text images can facilitate related tasks (e.g., text detection and recognition). Upon investigation, we find that existing methods, either rendering-based or diffusion-based, can hardly meet all these aspects simultaneously, limiting their application range. Therefore, we propose in this paper a visual text generator (termed SceneVTG), which can produce high-quality text images in the wild. Following a two-stage paradigm, SceneVTG leverages a Multimodal Large Language Model to recommend reasonable text regions and contents across multiple scales and levels, which are used by a conditional diffusion model as conditions to generate text images. Extensive experiments demonstrate that the proposed SceneVTG significantly outperforms traditional rendering-based methods and recent diffusion-based methods in terms of fidelity and reasonability. Besides, the generated images provide superior utility for tasks involving text detection and text recognition. Code and datasets are available at AdvancedLiterateMachinery.
Abstract:Recently, visually-situated text parsing (VsTP) has experienced notable advancements, driven by the increasing demand for automated document understanding and the emergence of Generative Large Language Models (LLMs) capable of processing document-based questions. Various methods have been proposed to address the challenging problem of VsTP. However, due to the diversified targets and heterogeneous schemas, previous works usually design task-specific architectures and objectives for individual tasks, which inadvertently leads to modal isolation and complex workflow. In this paper, we propose a unified paradigm for parsing visually-situated text across diverse scenarios. Specifically, we devise a universal model, called OmniParser, which can simultaneously handle three typical visually-situated text parsing tasks: text spotting, key information extraction, and table recognition. In OmniParser, all tasks share the unified encoder-decoder architecture, the unified objective: point-conditioned text generation, and the unified input & output representation: prompt & structured sequences. Extensive experiments demonstrate that the proposed OmniParser achieves state-of-the-art (SOTA) or highly competitive performances on 7 datasets for the three visually-situated text parsing tasks, despite its unified, concise design. The code is available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery.
Abstract:Text recognition, especially for complex scripts like Chinese, faces unique challenges due to its intricate character structures and vast vocabulary. Traditional one-hot encoding methods struggle with the representation of hierarchical radicals, recognition of Out-Of-Vocabulary (OOV) characters, and on-device deployment due to their computational intensity. To address these challenges, we propose HierCode, a novel and lightweight codebook that exploits the innate hierarchical nature of Chinese characters. HierCode employs a multi-hot encoding strategy, leveraging hierarchical binary tree encoding and prototype learning to create distinctive, informative representations for each character. This approach not only facilitates zero-shot recognition of OOV characters by utilizing shared radicals and structures but also excels in line-level recognition tasks by computing similarity with visual features, a notable advantage over existing methods. Extensive experiments across diverse benchmarks, including handwritten, scene, document, web, and ancient text, have showcased HierCode's superiority for both conventional and zero-shot Chinese character or text recognition, exhibiting state-of-the-art performance with significantly fewer parameters and fast inference speed.
Abstract:Table structure recognition (TSR) aims at extracting tables in images into machine-understandable formats. Recent methods solve this problem by predicting the adjacency relations of detected cell boxes or learning to directly generate the corresponding markup sequences from the table images. However, existing approaches either count on additional heuristic rules to recover the table structures, or face challenges in capturing long-range dependencies within tables, resulting in increased complexity. In this paper, we propose an alternative paradigm. We model TSR as a logical location regression problem and propose a new TSR framework called LORE, standing for LOgical location REgression network, which for the first time regresses logical location as well as spatial location of table cells in a unified network. Our proposed LORE is conceptually simpler, easier to train, and more accurate than other paradigms of TSR. Moreover, inspired by the persuasive success of pre-trained models on a number of computer vision and natural language processing tasks, we propose two pre-training tasks to enrich the spatial and logical representations at the feature level of LORE, resulting in an upgraded version called LORE++. The incorporation of pre-training in LORE++ has proven to enjoy significant advantages, leading to a substantial enhancement in terms of accuracy, generalization, and few-shot capability compared to its predecessor. Experiments on standard benchmarks against methods of previous paradigms demonstrate the superiority of LORE++, which highlights the potential and promising prospect of the logical location regression paradigm for TSR.
Abstract:Speech enhancement is a demanding task in automated speech processing pipelines, focusing on separating clean speech from noisy channels. Transformer based models have recently bested RNN and CNN models in speech enhancement, however at the same time they are much more computationally expensive and require much more high quality training data, which is always hard to come by. In this paper, we present an improvement for speech enhancement models that maintains the expressiveness of self-attention while significantly reducing model complexity, which we have termed Spectrum Attention Fusion. We carefully construct a convolutional module to replace several self-attention layers in a speech Transformer, allowing the model to more efficiently fuse spectral features. Our proposed model is able to achieve comparable or better results against SOTA models but with significantly smaller parameters (0.58M) on the Voice Bank + DEMAND dataset.
Abstract:Most models of visual attention are aimed at predicting either top-down or bottom-up control, as studied using different visual search and free-viewing tasks. We propose Human Attention Transformer (HAT), a single model predicting both forms of attention control. HAT is the new state-of-the-art (SOTA) in predicting the scanpath of fixations made during target-present and target-absent search, and matches or exceeds SOTA in the prediction of taskless free-viewing fixation scanpaths. HAT achieves this new SOTA by using a novel transformer-based architecture and a simplified foveated retina that collectively create a spatio-temporal awareness akin to the dynamic visual working memory of humans. Unlike previous methods that rely on a coarse grid of fixation cells and experience information loss due to fixation discretization, HAT features a dense-prediction architecture and outputs a dense heatmap for each fixation, thus avoiding discretizing fixations. HAT sets a new standard in computational attention, which emphasizes both effectiveness and generality. HAT's demonstrated scope and applicability will likely inspire the development of new attention models that can better predict human behavior in various attention-demanding scenarios.
Abstract:Recently, Visual Information Extraction (VIE) has been becoming increasingly important in both the academia and industry, due to the wide range of real-world applications. Previously, numerous works have been proposed to tackle this problem. However, the benchmarks used to assess these methods are relatively plain, i.e., scenarios with real-world complexity are not fully represented in these benchmarks. As the first contribution of this work, we curate and release a new dataset for VIE, in which the document images are much more challenging in that they are taken from real applications, and difficulties such as blur, partial occlusion, and printing shift are quite common. All these factors may lead to failures in information extraction. Therefore, as the second contribution, we explore an alternative approach to precisely and robustly extract key information from document images under such tough conditions. Specifically, in contrast to previous methods, which usually either incorporate visual information into a multi-modal architecture or train text spotting and information extraction in an end-to-end fashion, we explicitly model entities as semantic points, i.e., center points of entities are enriched with semantic information describing the attributes and relationships of different entities, which could largely benefit entity labeling and linking. Extensive experiments on standard benchmarks in this field as well as the proposed dataset demonstrate that the proposed method can achieve significantly enhanced performance on entity labeling and linking, compared with previous state-of-the-art models. Dataset is available at https://www.modelscope.cn/datasets/damo/SIBR/summary.
Abstract:Predicting human gaze is important in Human-Computer Interaction (HCI). However, to practically serve HCI applications, gaze prediction models must be scalable, fast, and accurate in their spatial and temporal gaze predictions. Recent scanpath prediction models focus on goal-directed attention (search). Such models are limited in their application due to a common approach relying on trained target detectors for all possible objects, and the availability of human gaze data for their training (both not scalable). In response, we pose a new task called ZeroGaze, a new variant of zero-shot learning where gaze is predicted for never-before-searched objects, and we develop a novel model, Gazeformer, to solve the ZeroGaze problem. In contrast to existing methods using object detector modules, Gazeformer encodes the target using a natural language model, thus leveraging semantic similarities in scanpath prediction. We use a transformer-based encoder-decoder architecture because transformers are particularly useful for generating contextual representations. Gazeformer surpasses other models by a large margin on the ZeroGaze setting. It also outperforms existing target-detection models on standard gaze prediction for both target-present and target-absent search tasks. In addition to its improved performance, Gazeformer is more than five times faster than the state-of-the-art target-present visual search model.