Abstract:Dynamic Scene Graph Generation (DSGG) aims to create a scene graph for each video frame by detecting objects and predicting their relationships. Weakly Supervised DSGG (WS-DSGG) reduces annotation workload by using an unlocalized scene graph from a single frame per video for training. Existing WS-DSGG methods depend on an off-the-shelf external object detector to generate pseudo labels for subsequent DSGG training. However, detectors trained on static, object-centric images struggle in dynamic, relation-aware scenarios required for DSGG, leading to inaccurate localization and low-confidence proposals. To address the challenges posed by external object detectors in WS-DSGG, we propose a Temporal-enhanced Relation-aware Knowledge Transferring (TRKT) method, which leverages knowledge to enhance detection in relation-aware dynamic scenarios. TRKT is built on two key components:(1)Relation-aware knowledge mining: we first employ object and relation class decoders that generate category-specific attention maps to highlight both object regions and interactive areas. Then we propose an Inter-frame Attention Augmentation strategy that exploits optical flow for neighboring frames to enhance the attention maps, making them motion-aware and robust to motion blur. This step yields relation- and motion-aware knowledge mining for WS-DSGG. (2) we introduce a Dual-stream Fusion Module that integrates category-specific attention maps into external detections to refine object localization and boost confidence scores for object proposals. Extensive experiments demonstrate that TRKT achieves state-of-the-art performance on Action Genome dataset. Our code is avaliable at https://github.com/XZPKU/TRKT.git.
Abstract:In this paper, we tackle the task of online video temporal grounding (OnVTG), which requires the model to locate events related to a given text query within a video stream. Unlike regular video temporal grounding, OnVTG requires the model to make predictions without observing future frames. As online videos are streaming inputs and can go on indefinitely, it is impractical and inefficient to store all historical inputs. The existing OnVTG models employ memory to store recent historical video frame features and predict scores indicating whether the current frame corresponds to the start or end time of the target event. However, these methods lack effective event modeling and cannot retain long-term historical information, leading to low performance. To tackle these challenges, we propose a hierarchical event memory for OnVTG. We propose an event-based OnVTG framework that makes predictions based on event proposals that model event-level information with various durations. To preserve historically valuable event information, we introduce a hierarchical event memory that retains historical events, allowing the model to access both recent and long-term information. To enable the real-time prediction, we further propose a future prediction branch that predicts whether the target event will occur shortly and further regresses the start time of the event. We achieve state-of-the-art performance on the TACoS, ActivityNet Captions, and MAD datasets. Code is available at https://github.com/minghangz/OnVTG.
Abstract:Image editing has made great progress on planar images, but panoramic image editing remains underexplored. Due to their spherical geometry and projection distortions, panoramic images present three key challenges: boundary discontinuity, trajectory deformation, and uneven pixel density. To tackle these issues, we propose SphereDrag, a novel panoramic editing framework utilizing spherical geometry knowledge for accurate and controllable editing. Specifically, adaptive reprojection (AR) uses adaptive spherical rotation to deal with discontinuity; great-circle trajectory adjustment (GCTA) tracks the movement trajectory more accurate; spherical search region tracking (SSRT) adaptively scales the search range based on spherical location to address uneven pixel density. Also, we construct PanoBench, a panoramic editing benchmark, including complex editing tasks involving multiple objects and diverse styles, which provides a standardized evaluation framework. Experiments show that SphereDrag gains a considerable improvement compared with existing methods in geometric consistency and image quality, achieving up to 10.5% relative improvement.
Abstract:In AI-empowered poster design, content-aware layout generation is crucial for the on-image arrangement of visual-textual elements, e.g., logo, text, and underlay. To perceive the background images, existing work demanded a high parameter count that far exceeds the size of available training data, which has impeded the model's real-time performance and generalization ability. To address these challenges, we proposed a patch-level data summarization and augmentation approach, vividly named Scan-and-Print. Specifically, the scan procedure selects only the patches suitable for placing element vertices to perform fine-grained perception efficiently. Then, the print procedure mixes up the patches and vertices across two image-layout pairs to synthesize over 100% new samples in each epoch while preserving their plausibility. Besides, to facilitate the vertex-level operations, a vertex-based layout representation is introduced. Extensive experimental results on widely used benchmarks demonstrated that Scan-and-Print can generate visually appealing layouts with state-of-the-art quality while dramatically reducing computational bottleneck by 95.2%.
Abstract:In poster design, content-aware layout generation is crucial for automatically arranging visual-textual elements on the given image. With limited training data, existing work focused on image-centric enhancement. However, this neglects the diversity of layouts and fails to cope with shape-variant elements or diverse design intents in generalized settings. To this end, we proposed a layout-centric approach that leverages layout knowledge implicit in large language models (LLMs) to create posters for omnifarious purposes, hence the name PosterO. Specifically, it structures layouts from datasets as trees in SVG language by universal shape, design intent vectorization, and hierarchical node representation. Then, it applies LLMs during inference to predict new layout trees by in-context learning with intent-aligned example selection. After layout trees are generated, we can seamlessly realize them into poster designs by editing the chat with LLMs. Extensive experimental results have demonstrated that PosterO can generate visually appealing layouts for given images, achieving new state-of-the-art performance across various benchmarks. To further explore PosterO's abilities under the generalized settings, we built PStylish7, the first dataset with multi-purpose posters and various-shaped elements, further offering a challenging test for advanced research.
Abstract:Humans can effortlessly locate desired objects in cluttered environments, relying on a cognitive mechanism known as visual search to efficiently filter out irrelevant information and focus on task-related regions. Inspired by this process, we propose Dyfo (Dynamic Focus), a training-free dynamic focusing visual search method that enhances fine-grained visual understanding in large multimodal models (LMMs). Unlike existing approaches which require additional modules or data collection, Dyfo leverages a bidirectional interaction between LMMs and visual experts, using a Monte Carlo Tree Search (MCTS) algorithm to simulate human-like focus adjustments. This enables LMMs to focus on key visual regions while filtering out irrelevant content, without introducing additional training caused by vocabulary expansion or the integration of specialized localization modules. Experimental results demonstrate that Dyfo significantly improves fine-grained visual understanding and reduces hallucination issues in LMMs, achieving superior performance across both fixed and dynamic resolution models. The code is available at https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
Abstract:Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal perception capabilities, garnering significant attention. While numerous evaluation studies have emerged, assessing LVLMs both holistically and on specialized tasks, fine-grained image tasks-fundamental to computer vision-remain largely unexplored. To fill this gap, we introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 3.49 million questions and 3.32 million images. Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives, focusing on their semantic recognition and fine-grained feature representation capabilities. Through extensive experiments on eight representative LVLMs/VLMs, we uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance. This work provides critical insights into the limitations of current LVLMs and offers guidance for future data construction and model design in the development of more advanced LVLMs. Our code is open-source and available at https://github.com/SEU-VIPGroup/FG-BMK.
Abstract:The development of Text-to-Video (T2V) generation has made motion transfer possible, enabling the control of video motion based on existing footage. However, current methods have two limitations: 1) struggle to handle multi-subjects videos, failing to transfer specific subject motion; 2) struggle to preserve the diversity and accuracy of motion as transferring to subjects with varying shapes. To overcome these, we introduce \textbf{ConMo}, a zero-shot framework that disentangle and recompose the motions of subjects and camera movements. ConMo isolates individual subject and background motion cues from complex trajectories in source videos using only subject masks, and reassembles them for target video generation. This approach enables more accurate motion control across diverse subjects and improves performance in multi-subject scenarios. Additionally, we propose soft guidance in the recomposition stage which controls the retention of original motion to adjust shape constraints, aiding subject shape adaptation and semantic transformation. Unlike previous methods, ConMo unlocks a wide range of applications, including subject size and position editing, subject removal, semantic modifications, and camera motion simulation. Extensive experiments demonstrate that ConMo significantly outperforms state-of-the-art methods in motion fidelity and semantic consistency. The code is available at https://github.com/Andyplus1/ConMo.
Abstract:Pre-trained on tremendous image-text pairs, vision-language models like CLIP have demonstrated promising zero-shot generalization across numerous image-based tasks. However, extending these capabilities to video tasks remains challenging due to limited labeled video data and high training costs. Recent video prompting methods attempt to adapt CLIP for video tasks by introducing learnable prompts, but they typically rely on a single static prompt for all video sequences, overlooking the diverse temporal dynamics and spatial variations that exist across frames. This limitation significantly hinders the model's ability to capture essential temporal information for effective video understanding. To address this, we propose an integrated Spatial-TempOral dynamic Prompting (STOP) model which consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting. Our intra-frame spatial prompts are designed to adaptively highlight discriminative regions within each frame by leveraging intra-frame attention and temporal variation, allowing the model to focus on areas with substantial temporal dynamics and capture fine-grained spatial details. Additionally, to highlight the varying importance of frames for video understanding, we further introduce inter-frame temporal prompts, dynamically inserting prompts between frames with high temporal variance as measured by frame similarity. This enables the model to prioritize key frames and enhances its capacity to understand temporal dependencies across sequences. Extensive experiments on various video benchmarks demonstrate that STOP consistently achieves superior performance against state-of-the-art methods. The code is available at https://github.com/zhoujiahuan1991/CVPR2025-STOP.
Abstract:Vision-language models (VLMs) encounter considerable challenges when adapting to domain shifts stemming from changes in data distribution. Test-time adaptation (TTA) has emerged as a promising approach to enhance VLM performance under such conditions. In practice, test data often arrives in batches, leading to increasing interest in the transductive TTA setting. However, existing TTA methods primarily focus on individual test samples, overlooking crucial cross-sample correlations within a batch. While recent ViT-based TTA methods have introduced batch-level adaptation, they remain suboptimal for VLMs due to inadequate integration of the text modality. To address these limitations, we propose a novel transductive TTA framework, Supportive Clique-based Attribute Prompting (SCAP), which effectively combines visual and textual information to enhance adaptation by generating fine-grained attribute prompts across test batches. SCAP first forms supportive cliques of test samples in an unsupervised manner based on visual similarity and learns an attribute prompt for each clique, capturing shared attributes critical for adaptation. For each test sample, SCAP aggregates attribute prompts from its associated cliques, providing enriched contextual information. To ensure adaptability over time, we incorporate a retention module that dynamically updates attribute prompts and their associated attributes as new data arrives. Comprehensive experiments across multiple benchmarks demonstrate that SCAP outperforms existing state-of-the-art methods, significantly advancing VLM generalization under domain shifts. Our code is available at https://github.com/zhoujiahuan1991/CVPR2025-SCAP.